Random feature weights for regression trees

被引:4
|
作者
Arnaiz-Gonzalez, Alvar [1 ]
Diez-Pastor, Jose F. [1 ]
Garcia-Osorio, Cesar [1 ]
Rodriguez, Juan J. [1 ]
机构
[1] Univ Burgos, Burgos, Spain
关键词
Regression trees; Ensembles; Bagging; Decision trees; Random feature weights;
D O I
10.1007/s13748-016-0081-5
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Ensembles are learning methods the operation of which relies on a combination of different base models. The diversity of ensembles is a fundamental aspect that conditions their operation. Random Feature Weights (RFW) was proposed as a classification-tree ensemble construction method in which diversity is introduced into each tree by means of a random weight associated with each attribute. These weights vary from one tree to another in the ensemble. In this article, the idea of RFW is adapted to decision-tree regression. A comparison is drawn with other ensemble construction methods: Bagging, Random Forest, Iterated Bagging, Random Subspaces and AdaBoost.R2 obtaining competitive results.
引用
收藏
页码:91 / 103
页数:13
相关论文
共 50 条
  • [1] Random trees with superexponential branching weights
    Janson, Svante
    Jonsson, Thordur
    Stefansson, Sigurdur Orn
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2011, 44 (48)
  • [2] Stein Random Feature Regression
    Warren, Houston
    Oliveira, Rafael
    Ramos, Fabio
    UNCERTAINTY IN ARTIFICIAL INTELLIGENCE, 2024, 244 : 3666 - 3688
  • [3] Learning random model trees for regression
    Li C.
    Li H.
    International Journal of Computers and Applications, 2011, 33 (03) : 258 - 265
  • [4] Random feature weights for decision tree ensemble construction
    Maudes, Jesus
    Rodriguez, Juan J.
    Garcia-Osorio, Cesar
    Garcia-Pedrajas, Nicolas
    INFORMATION FUSION, 2012, 13 (01) : 20 - 30
  • [5] Random feature selection using random subspace logistic regression
    Wichitaksorn, Nuttanan
    Kang, Yingyue
    Zhang, Faqiang
    EXPERT SYSTEMS WITH APPLICATIONS, 2023, 217
  • [6] Minimum spanning trees of random geometric graphs with location dependent weights
    Ganesan, Ghurumuruhan
    BERNOULLI, 2021, 27 (04) : 2473 - 2493
  • [7] Gaussian Process Regression With Interpretable Sample-Wise Feature Weights
    Yoshikawa, Yuya
    Iwata, Tomoharu
    IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2023, 34 (09) : 5789 - 5803
  • [8] Genetic parameters for quail body weights using a random regression model
    Akbas, Y
    Takma, Ç
    Yaylak, E
    SOUTH AFRICAN JOURNAL OF ANIMAL SCIENCE, 2004, 34 (02) : 104 - 109
  • [9] Random regression models to estimate genetic parameters for weights in Murrah buffaloes
    Ferreira, Flavia Rita
    de Araujo Neto, Francisco Ribeiro
    Borges, Henrique Barbosa
    Aspilcueta-Borquis, Rusbel Raul
    Hurtado-Lugo, Naudim Alejandro
    de Oliveira, Henrique Nunes
    de Albuquerque, Lucia Galvao
    Tonhati, Humberto
    ANIMAL SCIENCE JOURNAL, 2017, 88 (08) : 1212 - 1219
  • [10] Optimal Feature Set Size in Random Forest Regression
    Han, Sunwoo
    Kim, Hyunjoong
    APPLIED SCIENCES-BASEL, 2021, 11 (08):