APPROXIMATE INVERSION OF OPERATORS OF TWO-DIMENSIONAL VECTOR TOMOGRAPHY

被引:0
|
作者
Svetov, Ivan Evgenyevich [1 ,2 ]
Maltseva, Svetlana Vasilievna [1 ,2 ,3 ]
Polyakova, Anna Petrovna [1 ,2 ]
机构
[1] Sobolev Inst Math, Pr Koptyuga,4, Novosibirsk 630090, Russia
[2] Novosibirsk State Univ, St Pirogova,2, Novosibirsk 630090, Russia
[3] Lavrentyev Inst Hydrodynam, Pr Lavrentyeva,15, Novosibirsk 630090, Russia
关键词
vector tomography; method of approximate inverse; longitudinal ray transform; transverse ray transform; Radon transform; solenoidal vector field; potential vector field; potential; numerical simulation;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We propose two approaches for numerical solution of reconstruction problem of a vector field in an unit disk from the known values of longitudinal and transverse ray transforms. The algorithms are based on the method of approximate inverse. Numerical simulations show that the proposed algorithms yield good results of reconstruction of vector fields.
引用
收藏
页码:607 / 623
页数:17
相关论文
共 50 条
  • [1] An accurate approximate algorithm for motion compensation in two-dimensional tomography
    Katsevich, A.
    [J]. INVERSE PROBLEMS, 2010, 26 (06)
  • [2] COMPARISON OF TWO ALGORITHMS FOR THE NUMERICAL SOLUTION OF THE TWO-DIMENSIONAL VECTOR TOMOGRAPHY
    Svetov, I. E.
    Polyakova, A. P.
    [J]. SIBERIAN ELECTRONIC MATHEMATICAL REPORTS-SIBIRSKIE ELEKTRONNYE MATEMATICHESKIE IZVESTIYA, 2013, 10 : 90 - 108
  • [3] Two-dimensional QT inversion of complex magnetic resonance tomography data
    Jiang C.
    Müller-Petke M.
    Wang Q.
    Igel J.
    [J]. 2018, Society of Exploration Geophysicists (83) : JM65 - JM75
  • [4] Smoothness-constrained inversion for two-dimensional electrical resistance tomography
    UMIST, Manchester, United Kingdom
    [J]. Meas Sci Technol, 3 (293-302):
  • [5] Smoothness-constrained inversion for two-dimensional electrical resistance tomography
    Pinheiro, PAT
    Loh, WW
    Dickin, FJ
    [J]. MEASUREMENT SCIENCE AND TECHNOLOGY, 1997, 8 (03) : 293 - 302
  • [6] Two-dimensional QT inversion of complex magnetic resonance tomography data
    Jiang, Chuandong
    Mueller-Petke, Mike
    Wang, Qi
    Igel, Jan
    [J]. GEOPHYSICS, 2018, 83 (06) : JM65 - JM75
  • [7] TWO-DIMENSIONAL MAGNETOTELLURIC INVERSION
    ZHANG, AJ
    HILL, RG
    HOBBS, BA
    [J]. GEOPHYSICAL JOURNAL OF THE ROYAL ASTRONOMICAL SOCIETY, 1986, 85 (01): : 250 - 250
  • [8] TWO-DIMENSIONAL RESISTIVITY INVERSION
    TRIPP, AC
    HOHMANN, GW
    SWIFT, CM
    [J]. GEOPHYSICS, 1984, 49 (10) : 1708 - 1717
  • [9] TWO-DIMENSIONAL RESISTIVITY INVERSION
    TRIPP, AC
    HOHMANN, GW
    SWIFT, CM
    [J]. GEOPHYSICS, 1980, 45 (04) : 546 - 546
  • [10] TWO-DIMENSIONAL CURVATURE OPERATORS
    KOENDERINK, JJ
    RICHARDS, W
    [J]. JOURNAL OF THE OPTICAL SOCIETY OF AMERICA A-OPTICS IMAGE SCIENCE AND VISION, 1988, 5 (07) : 1136 - 1141