ON EXISTENCE OF NODAL SOLUTION TO ELLIPTIC EQUATIONS WITH CONVEX-CONCAVE NONLINEARITIES

被引:4
|
作者
Bobkov, V. E. [1 ]
机构
[1] RAS, CS USC, Inst Math, Chernyshevskii Str 112, Ufa 450008, Russia
来源
UFA MATHEMATICAL JOURNAL | 2013年 / 5卷 / 02期
关键词
nodal solution; convex-concave nonlinearity; fibering method;
D O I
10.13108/2013-5-2-18
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In a bounded connected domain Omega subset of R-N, N >= 1 , with a smooth boundary, we consider the Dirichlet boundary value problem for elliptic equation with a convex -concave nonlinearity {-Delta u = lambda vertical bar u vertical bar(q-2)u + vertical bar u vertical bar(gamma-2)u, x is an element of Omega u vertical bar(delta Omega) = 0, where 1 < q < 2 < gamma < 2*. As a main result, we prove the existence of a nodal solution to this equation on the nonlocal interval lambda is an element of (-infinity, lambda(*)(0)), where lambda(*)(0) is determined by the variational principle of nonlinear spectral analysis via fibering method.
引用
收藏
页码:18 / 30
页数:13
相关论文
共 50 条