The Burgers equation on the semi-infinite and finite intervals

被引:45
|
作者
Calogero, F. [1 ,2 ]
De Lillo, S. [3 ,4 ]
机构
[1] Univ Rome La Sapienza, Dipartimento Fis, I-00185 Rome, Italy
[2] Ist Nazl Fis Nucl, Sez Roma, Rome, Italy
[3] Univ Salerno, Dipartimento Fis, I-84100 Salerno, Italy
[4] Ist Nazl Fis Nucl, Sez Napoli, Naples, Italy
关键词
D O I
10.1088/0951-7715/2/1/003
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The initial/boundory value problem on the semiline and on a finite interval, for the Burgen equation u(t) = u(xx) + 2u(x)u, is solved, i.e. reduced, by quadratures, to a linear integral equation of Volterra type in one independent variable, which can itself be solved by quadratures if the boundary data are time independent.
引用
收藏
页码:37 / 43
页数:7
相关论文
共 50 条
  • [1] MORE ABOUT THE ECKHAUS EQUATION ON THE SEMI-INFINITE AND FINITE INTERVALS
    DELILLO, S
    [J]. INVERSE PROBLEMS, 1989, 5 (03) : L27 - L30
  • [2] Location of nonnegative solutions for differential equations on finite and semi-infinite intervals
    Agarwal, RP
    Meehan, M
    O'Regan, D
    Precup, R
    [J]. DYNAMIC SYSTEMS AND APPLICATIONS, 2003, 12 (3-4): : 323 - 331
  • [3] Positive Solutions of Nonlinear Systems with p-Laplacian on Finite and Semi-infinite Intervals
    Donal O’Regan
    Radu Precup
    [J]. Positivity, 2007, 11 : 537 - 548
  • [4] Positive solutions of nonlinear systems with p-laplacian on finite and semi-infinite intervals
    O'Regan, Donal
    Precup, Radu
    [J]. POSITIVITY, 2007, 11 (03) : 537 - 548
  • [5] Exact solutions of a modified fractional diffusion equation in the finite and semi-infinite domains
    Gang, Guo
    Kun, Li
    Wang Yuhui
    [J]. PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2015, 417 : 193 - 201
  • [6] Perturbation solutions of the Boussinesq equation for horizontal flow in finite and semi-infinite aquifers
    Basha, H. A.
    [J]. ADVANCES IN WATER RESOURCES, 2021, 155
  • [7] A semi-infinite matrix analysis of the BFKL equation
    de Leon, N. Bethencourt
    Chachamis, G.
    Romagnoni, A.
    Vera, A. Sabio
    [J]. EUROPEAN PHYSICAL JOURNAL C, 2020, 80 (06):
  • [8] BOUSSINESQ EQUATION SOLUTIONS FOR SEMI-INFINITE AQUIFER
    NOUTSOPOULOS, G
    PAPATHANASSIADIS, T
    GAVRIILIDIS, I
    [J]. JOURNAL OF HYDRAULIC ENGINEERING-ASCE, 1984, 110 (08): : 1155 - 1161
  • [9] A semi-infinite matrix analysis of the BFKL equation
    N. Bethencourt de León
    G. Chachamis
    A. Romagnoni
    A. Sabio Vera
    [J]. The European Physical Journal C, 2020, 80
  • [10] Dynamo waves in semi-infinite and finite domains
    Worledge, D
    Knobloch, E
    Tobias, S
    Proctor, M
    [J]. PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 1997, 453 (1956): : 119 - 143