SEMILOCAL NONTOPOLOGICAL VORTICES IN A CHERN-SIMONS THEORY

被引:6
|
作者
TORRES, M
机构
[1] Instituto de Física, Universidad Nacional Autónoma de México, 01000, D.F., México
来源
PHYSICAL REVIEW D | 1995年 / 51卷 / 08期
关键词
D O I
10.1103/PhysRevD.51.4533
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
We show the existence of self-dual semilocal nontopological vortices in a Φ2 Chern-Simons (CS) theory. The model of scalar and gauge fields with a SU(2)global×U(1)local symmetry includes both the CS term and an anomalous magnetic contribution. It is demonstrated here that the vortices are stable or unstable according to whether the vector topological mass κ is less than or greater than the mass m of the scalar field. At the boundary κ=m, there is a two-parameter family of solutions all saturating the self-dual limit. The vortex solutions continuously interpolate between a ring-shaped structure and a flux tube configuration. © 1995 The American Physical Society.
引用
收藏
页码:4533 / 4542
页数:10
相关论文
共 50 条
  • [1] A classification of semilocal vortices in a Chern-Simons theory
    Chern, Jann-Long
    Chen, Zhi-You
    Yang, Sze-Guang
    [J]. ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2016, 33 (02): : 575 - 595
  • [2] The topology of nontopological Chern-Simons vortices
    Horváthy, PA
    [J]. LETTERS IN MATHEMATICAL PHYSICS, 1999, 49 (01) : 67 - 70
  • [3] Existence of the semilocal Chern-Simons vortices
    Chae, D
    [J]. JOURNAL OF MATHEMATICAL PHYSICS, 2005, 46 (04)
  • [4] SEMILOCAL SELF-DUAL CHERN-SIMONS VORTICES
    KHARE, A
    [J]. PHYSICAL REVIEW D, 1992, 46 (06) : R2287 - R2289
  • [5] STABILITY OF NONTOPOLOGICAL CHERN-SIMONS VORTICES IN A PHI(2)-MODEL
    ESCALONA, J
    TORRES, M
    ANTILLON, A
    [J]. MODERN PHYSICS LETTERS A, 1993, 8 (31) : 2955 - 2962
  • [6] Diamagnetic vortices in Chern-Simons theory
    Anber, Mohamed M.
    Burnier, Yannis
    Sabancilar, Eray
    Shaposhnikov, Mikhail
    [J]. PHYSICAL REVIEW D, 2015, 92 (08):
  • [7] Semilocal Chern-Simons defects
    Fuertes, WG
    Guilarte, JM
    [J]. JOURNAL OF MATHEMATICAL PHYSICS, 1996, 37 (02) : 554 - 566
  • [8] The existence of nontopological vortices in a two-particle Chern-Simons system
    Yang, Sze-Guang
    [J]. JOURNAL OF MATHEMATICAL PHYSICS, 2009, 50 (05)
  • [9] NONTOPOLOGICAL SOLITONS IN CHERN-SIMONS SYSTEMS
    BAZEIA, D
    LOZANO, G
    [J]. PHYSICAL REVIEW D, 1991, 44 (10): : 3348 - 3351
  • [10] The Topology of Nontopological Chern–Simons Vortices
    P. A. Horváthy
    [J]. Letters in Mathematical Physics, 1999, 49 : 67 - 70