PRODUCTION SMOOTHING IN THE LINEAR-QUADRATIC INVENTORY MODEL

被引:28
|
作者
NAISH, HF
机构
来源
ECONOMIC JOURNAL | 1994年 / 104卷 / 425期
关键词
D O I
10.2307/2234980
中图分类号
F [经济];
学科分类号
02 ;
摘要
Contrary to popular belief, the linear quadratic inventory model does not imply that, in response to demand shocks, output is always less variable than sales. When demand shocks are not anticipated, and without this assumption it is hard to see why firms should hold inventories in the first place, it is shown that output can be more variable than sales, even when the only shocks are demand shocks, and the inventory target is not a rising function of sales. The variance of output will typically exceed that of sales when the firm's marginal cost curve is fairly flat.
引用
收藏
页码:864 / 875
页数:12
相关论文
共 50 条
  • [1] On the interpretation of cointegration in the linear-quadratic inventory model
    Hamilton, JD
    [J]. JOURNAL OF ECONOMIC DYNAMICS & CONTROL, 2002, 26 (12): : 2037 - 2049
  • [2] ESTIMATION AND INFERENCE IN THE LINEAR-QUADRATIC INVENTORY MODEL
    WEST, KD
    WILCOX, DW
    [J]. JOURNAL OF ECONOMIC DYNAMICS & CONTROL, 1994, 18 (3-4): : 897 - 908
  • [3] Gauging the performance of the linear-quadratic inventory model
    Bivin, DG
    [J]. APPLIED ECONOMICS, 2005, 37 (11) : 1215 - 1231
  • [4] A noniterative algorithm for the linear-quadratic profit-maximization model for smoothing multiproduct production
    Singhal, Jaya
    Singhal, Kalyan
    [J]. INFORMS JOURNAL ON COMPUTING, 2008, 20 (02) : 169 - 178
  • [5] Cost smoothing in discrete-time linear-quadratic control
    Li, D
    Schmidt, CW
    [J]. AUTOMATICA, 1997, 33 (03) : 447 - 452
  • [6] On linear-quadratic optimization and linear-quadratic differential games
    Rozonoer, LI
    [J]. AUTOMATION AND REMOTE CONTROL, 1999, 60 (05) : 744 - 757
  • [7] Optimal Linear-Quadratic Model Designs
    Borkowski, John J.
    [J]. THAILAND STATISTICIAN, 2008, 6 (01): : 47 - 64
  • [8] Repopulation Kinetics and the Linear-Quadratic Model
    O'Rourke, S. F. C.
    McAneney, H.
    Starrett, C.
    O'Sullivan, J. M.
    [J]. COMPUTATIONAL METHODS IN SCIENCE AND ENGINEERING, VOL 2: ADVANCES IN COMPUTATIONAL SCIENCE, 2009, 1148 : 209 - +
  • [9] The Linear-Quadratic Model and Implications for Fractionation
    Brand, D. H.
    Yarnold, J. R.
    [J]. CLINICAL ONCOLOGY, 2020, 32 (04) : 277 - 277
  • [10] The Linear-Quadratic Model and Implications for Fractionation
    Brand, D. H.
    Yarnold, J. R.
    [J]. CLINICAL ONCOLOGY, 2019, 31 (10) : 673 - 677