Lagrangian and Hamiltonian dynamics with imaginary time

被引:10
|
作者
El-Nabulsi, Rami Ahmad [1 ,2 ]
机构
[1] Key Lab Numer Simulat Sichuan Prov, Neijiang 641112, Sichuan, Peoples R China
[2] Neijiang Normal Univ, Coll Math & Informat Sci, Neijiang 641112, Sichuan, Peoples R China
关键词
Complexified dynamics; imaginary time; pendulum problem;
D O I
10.1515/jaa-2012-0010
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Certain aspects of Lagrangian and Hamiltonian dynamics are investigated within the framework of an extended complex phase space approach, characterized by the transformation q = q(1) + i q(2), p = p(1) + i p(2) and by the presence of the imaginary time variable tau in the complex variable z = t +i tau in a local chart. It is an application of imaginary time which is essential in connecting quantum mechanics with statistical physics. We argue that the novel complexified approach enhances the system of dynamical equations obtained in the sense that the new derived equations appear as certain combinations of former equations. Furthermore, it was shown that the physics we experience in the real time is somewhat different from what is experienced in imaginary region. Further consequences are discussed in some details.
引用
收藏
页码:283 / 295
页数:13
相关论文
共 50 条
  • [1] LAGRANGIAN SUBMANIFOLDS AND HAMILTONIAN DYNAMICS
    TULCZYJEW, WM
    [J]. COMPTES RENDUS HEBDOMADAIRES DES SEANCES DE L ACADEMIE DES SCIENCES SERIE A, 1976, 283 (01): : 15 - 18
  • [2] Hamiltonian and Lagrangian dynamics in a noncommutative space
    Malik, RP
    [J]. MODERN PHYSICS LETTERS A, 2003, 18 (39) : 2795 - 2806
  • [3] Lagrangian tetragons and instabilities in Hamiltonian dynamics
    Entov, Michael
    Polterovich, Leonid
    [J]. NONLINEARITY, 2017, 30 (01) : 13 - 34
  • [4] Laughlin States Change Under Large Geometry Deformations and Imaginary Time Hamiltonian Dynamics
    Matos, Gabriel
    Mera, Bruno
    Mourao, Jose M.
    Mourao, Paulo D. D.
    Nunes, Joao P.
    [J]. COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2023, 399 (03) : 2045 - 2070
  • [5] Laughlin States Change Under Large Geometry Deformations and Imaginary Time Hamiltonian Dynamics
    Gabriel Matos
    Bruno Mera
    José M. Mourão
    Paulo D. Mourão
    João P. Nunes
    [J]. Communications in Mathematical Physics, 2023, 399 : 2045 - 2070
  • [6] Lagrangian and Hamiltonian dynamics for probabilities on the statistical bundle
    Chirco, Goffredo
    Malago, Luigi
    Pistone, Giovanni
    [J]. INTERNATIONAL JOURNAL OF GEOMETRIC METHODS IN MODERN PHYSICS, 2022, 19 (13)
  • [7] Holomorphic cylinders with Lagrangian boundaries and Hamiltonian dynamics
    Gatien, D
    Lalonde, F
    [J]. DUKE MATHEMATICAL JOURNAL, 2000, 102 (03) : 485 - 511
  • [8] Bubble interaction dynamics in Lagrangian and Hamiltonian mechanics
    Ilinskii, Yurii A.
    Hamilton, Mark F.
    Zabolotskaya, Evgenia A.
    [J]. JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA, 2007, 121 (02): : 786 - 795
  • [9] Lagrangian and Hamiltonian formulation of spherical shell dynamics
    Kijowski, J
    Magli, G
    Malafarina, D
    [J]. INTERNATIONAL JOURNAL OF GEOMETRIC METHODS IN MODERN PHYSICS, 2005, 2 (05) : 887 - 894
  • [10] GEOMETRY OF LAGRANGIAN AND HAMILTONIAN FORMALISMS IN THE DYNAMICS OF STRINGS
    Grabowski, Janusz
    Grabowska, Katarzyna
    Urbanski, Pawel
    [J]. JOURNAL OF GEOMETRIC MECHANICS, 2014, 6 (04): : 503 - 526