UNIFIED FORMALISM FOR QUANTUM AND CLASSICAL SCATTERING THEORIES

被引:1
|
作者
SHIROKOV, YM
机构
关键词
D O I
10.1007/BF01018537
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
引用
收藏
页码:206 / 211
页数:6
相关论文
共 50 条
  • [1] CLASSICAL AND QUANTUM FIELD THEORIES IN THE LAGRANGIAN FORMALISM
    BERGMANN, PG
    SCHILLER, R
    [J]. PHYSICAL REVIEW, 1953, 89 (01): : 4 - 16
  • [2] A NEW MULTISYMPLECTIC UNIFIED FORMALISM FOR SECOND ORDER CLASSICAL FIELD THEORIES
    Daniel Prieto-Martinez, Pedro
    Roman-Roy, Narciso
    [J]. JOURNAL OF GEOMETRIC MECHANICS, 2015, 7 (02): : 203 - 253
  • [3] Unified formalism for Thermal Quantum Field Theories: A geometric viewpoint
    Blasone, M.
    Jizba, P.
    Luciano, G. G.
    [J]. ANNALS OF PHYSICS, 2018, 397 : 213 - 233
  • [4] COMPARISON BETWEEN CLASSICAL AND QUANTUM THEORIES OF INCOHERENT-SCATTERING
    JANOSSY, L
    [J]. ACTA PHYSICA ACADEMIAE SCIENTIARUM HUNGARICAE, 1975, 38 (01): : 47 - 54
  • [5] Quantifying non-classical and beyond-quantum correlations in the unified operator formalism
    Geller, Joshua
    Piani, Marco
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2014, 47 (42)
  • [6] Quantum formalism for classical statistics
    Wetterich, C.
    [J]. ANNALS OF PHYSICS, 2018, 393 : 1 - 70
  • [7] Hamel’s Formalism for Classical Field Theories
    Donghua Shi
    Dmitry V. Zenkov
    Anthony M. Bloch
    [J]. Journal of Nonlinear Science, 2020, 30 : 1307 - 1353
  • [8] UNIFIED TREATMENT OF DYNAMICS AND SCATTERING IN CLASSICAL AND QUANTUM STATISTICAL-MECHANICS
    PRUGOVECKI, E
    [J]. PHYSICA A, 1978, 91 (1-2): : 202 - 228
  • [9] Hamel's Formalism for Classical Field Theories
    Shi, Donghua
    Zenkov, Dmitry V.
    Bloch, Anthony M.
    [J]. JOURNAL OF NONLINEAR SCIENCE, 2020, 30 (04) : 1307 - 1353
  • [10] CLASSICAL TRANSPORT WITHIN THE SCATTERING FORMALISM
    SHAPIRO, B
    [J]. PHYSICAL REVIEW B, 1987, 35 (15): : 8256 - 8259