UNCERTAINTY IN VOLATILITY. AN APPLICATION TO THE VALUATION OF BARRIER OPTIONS

被引:0
|
作者
Marabel-Romo, Jacinto [1 ]
Luis Crespo-Espert, Jose [2 ,3 ]
机构
[1] Gestor Derivados Renta Variable BBVA, Via Poblados S-N, Madrid 28033, Spain
[2] Univ Alcala UAH, Inst Univ Anal Econ & Social, Econ Financiera & Contabilidad, Alcala De Henares 28802, Madrid, Spain
[3] Univ Alcala UAH, Dept Ciencias Empresariales, Alcala De Henares 28802, Madrid, Spain
关键词
uncertain volatility; barrier options; gamma; implied volatility; stochastic volatility;
D O I
暂无
中图分类号
F [经济];
学科分类号
02 ;
摘要
Some barrier options, such as the down-and-out puts, exhibit a gamma that changes sign. In this article we price this kind of options assuming that there is uncertainty regarding volatility but it is assumed to lie within a certain range. We present the partial differential equation corresponding to the derivative and solve it numerically using the finite difference method. The results show that barrier option prices are quite sensitive to the existence of uncertainty about volatility. We also show that the prices obtained using the uncertain volatility model are consistent with the prices generated under a stochastic volatility framework.
引用
收藏
页码:161 / 186
页数:26
相关论文
共 50 条
  • [1] Valuation Bounds on Barrier Options Under Model Uncertainty
    Hong, Yi
    [J]. JOURNAL OF FUTURES MARKETS, 2013, 33 (03) : 199 - 234
  • [2] Valuation of barrier and lookback options under hybrid CEV and stochastic volatility
    Cao, Jiling
    Kim, Jeong-Hoon
    Li, Xi
    Zhang, Wenjun
    [J]. MATHEMATICS AND COMPUTERS IN SIMULATION, 2023, 208 : 660 - 676
  • [3] Forecasting volatility for options valuation
    Belaifa, Mahdjouba
    Morimune, Kimio
    [J]. OPEC ENERGY REVIEW, 2006, 30 (03) : 151 - 169
  • [4] On the valuation of fader and discrete barrier options in Heston's stochastic volatility model
    Griebsch, Susanne A.
    Wystup, Uwe
    [J]. QUANTITATIVE FINANCE, 2011, 11 (05) : 693 - 709
  • [5] Lookback options and dynamic fund protection under multiscale stochastic volatility.
    Wong, HY
    Chan, CM
    [J]. INSURANCE MATHEMATICS & ECONOMICS, 2005, 37 (02): : 391 - 391
  • [6] THE VALUATION OF TIMER POWER OPTIONS WITH STOCHASTIC VOLATILITY
    Ha, Mijin
    Kim, Donghyun
    Ahn, Seryoong
    Yoon, Ji-hun
    [J]. JOURNAL OF THE KOREAN SOCIETY FOR INDUSTRIAL AND APPLIED MATHEMATICS, 2022, 26 (04) : 296 - 309
  • [7] An analytic expansion method for the valuation of double-barrier options under a stochastic volatility model
    Jeon, Junkee
    Yoon, Ji-Hun
    Park, Chang-Rae
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2017, 449 (01) : 207 - 227
  • [8] Stochastic lattice models for valuation of volatility options
    Ma, Jingtang
    Li, Wenyuan
    Han, Xu
    [J]. ECONOMIC MODELLING, 2015, 47 : 93 - 104
  • [9] Canonical valuation of options in the presence of stochastic volatility
    Gray, P
    Newman, S
    [J]. JOURNAL OF FUTURES MARKETS, 2005, 25 (01) : 1 - 19
  • [10] Valuation of American partial barrier options
    Doobae Jun
    Hyejin Ku
    [J]. Review of Derivatives Research, 2013, 16 : 167 - 191