An analog of Chang inversion formula for weighted Radon transforms in multidimensions

被引:4
|
作者
Goncharov, F. O. [1 ,2 ]
Novikov, R. G. [3 ,4 ]
机构
[1] Moscow Inst Phys & Technol, Dolgoprudnyi 141700, Moscow Region, Russia
[2] RAS, Inst Informat Transmiss Problems, Bolshoy Karetny Per 19,Buld 1, Moscow 127051, Russia
[3] Ecole Polytech, Ctr Math Appl, CNRS UMR 7641, F-91128 Palaiseau, France
[4] RAS, Inst Earthquake Predict Theory & Math Geophys, Moscow 117997, Russia
关键词
weighted Radon transforms; inversion formulas;
D O I
10.32523/2306-6172-2016-4-2-23-32
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this work we study weighted Radon transforms in multidimensions. We introduce an analog of Chang approximate inversion formula for such transforms and describe all weights for which this formula is exact. In addition, we indicate possible tomographical applications of inversion methods for weighted Radon transforms in 3D.
引用
收藏
页码:23 / 32
页数:10
相关论文
共 50 条
  • [1] Weighted Radon transforms for which Chang's approximate inversion formula is exact
    Novikov, R. G.
    RUSSIAN MATHEMATICAL SURVEYS, 2011, 66 (02) : 442 - 443
  • [2] An example of non-uniqueness for the weighted Radon transforms along hyperplanes in multidimensions
    Goncharov, F. O.
    Novikov, R. G.
    INVERSE PROBLEMS, 2018, 34 (05)
  • [3] INVERSION FORMULA FOR THE WEIGHTED CONICAL RADON TRANSFORM
    Kim, C.
    Moon, S.
    Oh, J.
    EURASIAN JOURNAL OF MATHEMATICAL AND COMPUTER APPLICATIONS, 2024, 12 (04): : 67 - 74
  • [4] An iterative inversion of weighted Radon transforms along hyperplanes
    Goncharov, F. O.
    INVERSE PROBLEMS, 2017, 33 (12)
  • [5] A breakdown of injectivity for weighted ray transforms in multidimensions
    Goncharov, F. O.
    Novikov, R. G.
    ARKIV FOR MATEMATIK, 2019, 57 (02): : 333 - 371
  • [6] An inversion formula for the weighted Radon transform along family of cones
    Muminov, Mukhiddin I.
    Ochilov, Zarifjon Kh.
    NANOSYSTEMS-PHYSICS CHEMISTRY MATHEMATICS, 2023, 14 (01): : 22 - 27
  • [7] Inversion of weighted Radon transforms via finite Fourier series weight approximations
    Guillement, J. -P.
    Novikov, R. G.
    INVERSE PROBLEMS IN SCIENCE AND ENGINEERING, 2014, 22 (05) : 787 - 802
  • [8] RADON INVERSION-FORMULA
    MONTALDI, E
    LETTERE AL NUOVO CIMENTO, 1979, 26 (18): : 593 - 598
  • [9] UNIFIED RADON INVERSION FORMULA
    DEANS, SR
    JOURNAL OF MATHEMATICAL PHYSICS, 1978, 19 (11) : 2346 - 2349
  • [10] SPHERICAL QUADRATURE AND INVERSION OF RADON TRANSFORMS
    MADYCH, WR
    NELSON, SA
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1985, 95 (03) : 453 - 457