FERMAT AND MERSENNE NUMBERS

被引:0
|
作者
Leyendekkers, J. V. [1 ]
Shannon, A. G. [2 ,3 ]
机构
[1] Univ Sydney, Sydney, NSW 2006, Australia
[2] Univ New South Wales, Warrane Coll, Kensington, NSW 1465, Australia
[3] KvB Inst Technol, Sydney, NSW 2060, Australia
关键词
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Fermat numbers (F-n = 2(2n) + 1)and Mersenne numbers (M-m = 2(m) - 1) m odd are compared on the basis of integer structure, using the modular rings Z(4) and Z(6). The two numbers fall in different classes and this results in different composite row structures and different potentials for the formation of primes. The constraints on 2(n) and the right end digits for F-n result in fewer numbers over a given range than those for M-m. This is shown with two functions which link the two numbers and show that F-n = (2(x2+y2-1) + 1): for primes y = n, but when n>4, y not equal n.
引用
收藏
页码:17 / 24
页数:8
相关论文
共 50 条