COMPUTATIONAL EXPERIMENT FOR ONE CLASS OF EVOLUTION MATHEMATICAL MODELS IN QUASI-SOBOLEV SPACES

被引:0
|
作者
Al-Isawi, J. K. T. [1 ]
Zamyshlyaeva, A. A. [1 ]
机构
[1] South Ural State Univ, Chelyabinsk, Russia
关键词
evolution equation; quasi-Banach spaces; numerical solution;
D O I
10.14529/mmp160413
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In the article the mathematical model representing one class of evolution equations in quasi-Banach spaces is studied. A theorem on the unique solvability of the Cauchy problem is stated. The conditions for the phase space existence are presented. We also give the conditions for exponential dichotomies of solutions. Based on the theoretical results there was developed an algorithm for the numerical solution of the problem. The algorithm is implemented in Maple. The article includes description of the algorithm which is illustrated by variety of model examples showing the work of the developed program and represent the main properties of solutions.
引用
收藏
页码:141 / 147
页数:7
相关论文
共 27 条
  • [1] On Some Properties of Solutions to One Class of Evolution Sobolev Type Mathematical Models in Quasi-Sobolev Spaces
    Zamyshlyaeva, A. A.
    Al-Isawi, J. K. T.
    BULLETIN OF THE SOUTH URAL STATE UNIVERSITY SERIES-MATHEMATICAL MODELLING PROGRAMMING & COMPUTER SOFTWARE, 2015, 8 (04): : 113 - 119
  • [2] THE LAPLACE' QUASI-OPERATOR IN QUASI-SOBOLEV SPACES
    Al-Delfi, J. K. K.
    VESTNIK SAMARSKOGO GOSUDARSTVENNOGO TEKHNICHESKOGO UNIVERSITETA-SERIYA-FIZIKO-MATEMATICHESKIYE NAUKI, 2013, (02): : 13 - 16
  • [3] Bounded Solutions of Barenblatt - Zheltov - Kochina Model in Quasi-Sobolev Spaces
    Sagadeeva, M. A.
    Hasan, F. L.
    BULLETIN OF THE SOUTH URAL STATE UNIVERSITY SERIES-MATHEMATICAL MODELLING PROGRAMMING & COMPUTER SOFTWARE, 2015, 8 (04): : 138 - 144
  • [4] ON ONE SOBOLEV TYPE MATHEMATICAL MODEL IN QUASI-BANACH SPACES
    Zamyshlyaeva, A. A.
    Al Helli, H. M.
    BULLETIN OF THE SOUTH URAL STATE UNIVERSITY SERIES-MATHEMATICAL MODELLING PROGRAMMING & COMPUTER SOFTWARE, 2015, 8 (01): : 137 - 142
  • [5] Some properties of functions of one class of weighted Sobolev spaces
    Fefelov D.V.
    Siberian Mathematical Journal, 1999, 40 (5) : 1004 - 1016
  • [6] Cancer Evolution: Mathematical Models and Computational Inference
    Beerenwinkel, Niko
    Schwarz, Roland F.
    Gerstung, Moritz
    Markowetz, Florian
    SYSTEMATIC BIOLOGY, 2015, 64 (01) : E1 - E25
  • [7] COMPUTATIONAL MODELS OF CERTAIN HYPERSPACES OF QUASI-METRIC SPACES
    Ali-Akbari, Mahdi
    Pourmahdian, Massoud
    LOGICAL METHODS IN COMPUTER SCIENCE, 2011, 7 (04) : 1 - 25
  • [8] COMPUTATIONAL EXPERIMENT FOR ONE MATHEMATICAL MODEL OF ION-ACOUSTIC WAVES
    Zamyshlyaeva, A. A.
    Muravyev, A. S.
    BULLETIN OF THE SOUTH URAL STATE UNIVERSITY SERIES-MATHEMATICAL MODELLING PROGRAMMING & COMPUTER SOFTWARE, 2015, 8 (02): : 127 - 132
  • [9] EXACT IMBEDDING THEOREMS FOR ONE CLASS OF THE SOBOLEV,S.L. WEIGHT SPACES
    KUFNER, A
    OPITS, B
    SKRYPNIK, IV
    STETSYUK, VP
    DOPOVIDI AKADEMII NAUK UKRAINSKOI RSR SERIYA A-FIZIKO-MATEMATICHNI TA TECHNICHNI NAUKI, 1988, (01): : 21 - 25
  • [10] Wavelet shrinkage and a new class of variational models based on Besov spaces and negative Hilbert-Sobolev spaces
    Li Min
    Feng Xiangchu
    CHINESE JOURNAL OF ELECTRONICS, 2007, 16 (02): : 276 - 280