Perinatal exposure to cocaine has been shown to cause morphological and neurobehavioral abnormalities. In the current study, neonatal rats were given an acute injection of cocaine (30 mg/kg s.c.) at 1, 3, 5, 8, 11 or 15 days of age, and [H-3]thymidine incorporation into DNA examined over the ensuing 30 min period. Three brain regions were used that differ in their timetables of cell maturation: cerebellum, cerebral cortex and midbrain + brainstem. Cocaine inhibited DNA synthesis in all brain regions, with diminishing impact as the animals matured; by 15 days of age, the effect of cocaine was no longer significant. Inhibition of macromolecule synthesis was selective for DNA, as [H-3]leucine incorporation into protein was much less affected by cocaine. Although inhibition of [H-3]thymidine incorporation by a single injection of cocaine was short-lived, repeated administration could have cumulative effects: chronic treatment on days 2, 3 and 4 did no desensitize the adverse effect of a subsequent dose administered on day 5. Additionally, with chronic cocaine, the cerebellum displayed a pronounced rebound elevation of DNA synthesis 24 h after the last dose, a characteristic finding in delayed cell maturation. Inhibition of DNA synthesis by cocaine in developing brain was not secondary to ischemia, nor to local anesthesia, as alpha-adrenergic blockade with phenoxybenzamine afforded no protection, and lidocaine could not substitute for cocaine. In contrast, a small amount (15-mu-g) of cocaine injected directly into the central nervous system readily caused inhibition of DNA synthesis; the same dose given systematically had no effect. These data suggest that cocaine damages the developing brain, in part, through direct interference with DNA synthesis.