OBSERVATIONS OF THE SOLAR-WIND FROM CORONAL HOLES

被引:9
|
作者
NEUGEBAUER, M
机构
[1] Mail Stop 169-506, Jet Propulsion Laboratory, California Institute of Technology, Pasadena, 91109, CA
关键词
SUN; SOLAR WIND; CORONAL HOLES;
D O I
10.1007/BF00777887
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
The solar wind emanating from coronal holes (CH) constitutes a quasi-stationary flow whose properties change only slowly with the evolution of the hole itself. Some of the properties of the wind from coronal holes depend on whether the source is a large polar coronal hole or a small near-equatorial hole. The speed of polar CH flows is usually between 700 and 800 km/s, whereas the speed from the small equatorial CH flows is generally lower and can be <400 km/s. At 1 AU, the average particle and energy fluxes from polar CH are 2.5 x 10(8) cm-2 sec-1 and 2.0 erg cm-2 s-1. This particle flux is significantly less than the 4x10(8) cm-2 sec-1 observed in the slow, interstream wind, but the energy fluxes are approximately the same. Both the particle and energy fluxes from small equatorial holes are somewhat smaller than the fluxes from the large polar coronal holes. Many of the properties of the wind from coronal holes can be explained, at least qualitatively, as being the result of the effect of the large flux of outward-propagating Alfven waves observed in CH flows. The different ion species have roughly equal thermal speeds which are also close to the Alfven speed. The velocity of heavy ions exceeds the proton velocity by the Alfven speed, as if the heavy ions were surfing on the waves carried by the proton fluid. The elemental composition of the CH wind is less fractionated, having a smaller enhancement of elements with low first-ionization potentials than the interstream wind, the wind from coronal mass ejections, or solar energetic particles. There is also evidence of fine-structure in the ratio of the gas and magnetic pressures which maps back to a scale size of roughly 1-degree at the Sun, similar to some of the fine structures in coronal holes such as plumes, macrospicules, and the supergranulation.
引用
收藏
页码:319 / 330
页数:12
相关论文
共 50 条
  • [1] ULYSSES OBSERVATIONS OF MICROSTREAMS IN THE SOLAR-WIND FROM CORONAL HOLES
    NEUGEBAUER, M
    GOLDSTEIN, BE
    MCCOMAS, DJ
    SUESS, ST
    BALOGH, A
    [J]. JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS, 1995, 100 (A12) : 23389 - 23395
  • [2] HIGH LATITUDE OBSERVATIONS OF SOLAR-WIND STREAMS AND CORONAL HOLES
    RICKETT, BJ
    SIME, DG
    SHEELEY, NR
    CROCKETT, WR
    TOUSEY, R
    [J]. JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS, 1976, 81 (22): : 3845 - 3850
  • [3] CORONAL HOLES AS SOURCES OF SOLAR-WIND
    NOLTE, JT
    KRIEGER, AS
    TIMOTHY, AF
    GOLD, RE
    ROELOF, EC
    VAIANA, G
    LAZARUS, AJ
    SULLIVAN, JD
    MCINTOSH, PS
    [J]. SOLAR PHYSICS, 1976, 46 (02) : 303 - 322
  • [4] CORONAL HOLES ON SUN AND THEIR SOLAR-WIND INTERACTIONS
    BROUSSARD, RM
    [J]. PUBLICATIONS OF THE ASTRONOMICAL SOCIETY OF THE PACIFIC, 1977, 89 (531) : 614 - 614
  • [5] TRANSITION REGION, CORONA, AND SOLAR-WIND IN CORONAL HOLES
    HOLLWEG, JV
    [J]. JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS, 1986, 91 (A4) : 4111 - 4125
  • [6] Observations of Slow Solar Wind from Equatorial Coronal Holes
    Wang, Y-M
    Ko, Y-K
    [J]. ASTROPHYSICAL JOURNAL, 2019, 880 (02):
  • [7] Suprathermal ions in solar-wind outflows from coronal holes at 1 AU
    Zel'dovich, M. A.
    Logachev, Yu. I.
    Surova, G. M.
    Kecskemety, K.
    Veselovskii, I. S.
    [J]. ASTRONOMY REPORTS, 2016, 60 (07) : 687 - 693
  • [8] Suprathermal ions in solar-wind outflows from coronal holes at 1 AU
    M. A. Zel’dovich
    Yu. I. Logachev
    G. M. Surova
    K. Kecskemety
    I. S. Veselovskii
    [J]. Astronomy Reports, 2016, 60 : 687 - 693
  • [9] ON A POSSIBLE CONTROL MECHANISM FOR SOLAR-WIND OUTFLOW VELOCITY FROM CORONAL HOLES
    FAINSHTEIN, VG
    KAIGORODOV, AP
    [J]. SOLAR PHYSICS, 1994, 152 (02) : 429 - 444
  • [10] MAGNETOHYDRODYNAMIC WAVE CONVERSION AND SOLAR-WIND ACCELERATION IN CORONAL HOLES
    WENTZEL, DG
    [J]. ASTROPHYSICAL JOURNAL, 1989, 336 (02): : 1073 - 1077