Triboelectric Nanogenerators for Marine Applications: Recent Advances in Energy Harvesting, Monitoring, and Self-Powered Equipment

被引:0
|
作者
Dip, Tanvir Mahady [1 ,2 ]
Arin, Md. Reasat Aktar [3 ]
Anik, Habibur Rahman [4 ]
Uddin, Md Mazbah [5 ]
Tushar, Shariful Islam [6 ]
Sayam, Abdullah [3 ]
Sharma, Suraj [5 ]
机构
[1] Univ Manchester, Dept Mat, 316 Oxford Rd, Manchester M13 9PL, England
[2] Bangladesh Univ Text, Dept Yarn Engn, Dhaka 1208, Bangladesh
[3] Bangladesh Univ Text, Dept Fabr Engn, Dhaka 1208, Bangladesh
[4] Bangladesh Univ Text, Dept Apparel Engn, Dhaka 1208, Bangladesh
[5] Univ Georgia, Dept Text Merchandising & Interiors, 305 Sanford Dr, Athens, GA 30602 USA
[6] Oklahoma State Univ, Dept Design & Merchandising, Stillwater, OK 74078 USA
关键词
energy conversion; internet of things; marine; monitoring and forecasting; self-powered monitoring; triboelectric nanogenerators;
D O I
暂无
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Progress in advanced electronics has initiated the investigation of new ways to develop and apply self-powered smart devices. The concern for meteoric exhausting non-renewable energy sources has spurred such endeavors. Even so, using external power sources like batteries is problematic due to limited capacity, maintenance inconvenience, replacement, and environmental hazards. Triboelectric nanogenerators (TENGs) capable of converting various forms of mechanical energies into electrical output are gaining popularity. The marine and coastal areas are abundant sources of salvable mechanical energy. TENGs can convert lower-frequency, ununiform, multidirectional energies into usable electricity. This can solve the device-powering problem and can generate diverse signals to act as monitoring or sensing platforms themselves. In this review, three main TENG-based/TENG-driven application themes are addressed, i.e., energy harvesting, marine environment monitoring, and self-powered equipment for marine-related activities. It attempts to emphasize that various design features of TENGs can influence output performance; TENGs can power devices and monitor ocean parameters; TENGs-integrated modern IoT networking systems can transmit real-time data. Overall, this review encompasses the fundamental working mechanisms, structure designs, and practical implementation scenarios of recently developed devices in diverse marine applications. Finally, the existing challenges and potential future directions for TENG-based marine self-powered electronic systems are discussed.
引用
下载
收藏
页数:39
相关论文
共 50 条
  • [1] Triboelectric Nanogenerators for Marine Applications: Recent Advances in Energy Harvesting, Monitoring, and Self-Powered Equipment
    Dip, Tanvir Mahady
    Arin, Md. Reasat Aktar
    Anik, Habibur Rahman
    Uddin, Md Mazbah
    Tushar, Shariful Islam
    Sayam, Abdullah
    Sharma, Suraj
    ADVANCED MATERIALS TECHNOLOGIES, 2023, 8 (21):
  • [2] Recent Advances towards Ocean Energy Harvesting and Self-Powered Applications Based on Triboelectric Nanogenerators
    Shen, Fan
    Li, Zhongjie
    Guo, Hengyu
    Yang, Zhengbao
    Wu, Hao
    Wang, Min
    Luo, Jun
    Xie, Shaorong
    Peng, Yan
    Pu, Huayan
    ADVANCED ELECTRONIC MATERIALS, 2021, 7 (09)
  • [3] Recent advancements in solid-liquid triboelectric nanogenerators for energy harvesting and self-powered applications
    Chatterjee, Subhodeep
    Burman, Snigdha Roy
    Khan, Imran
    Saha, Subhajit
    Choi, Dukhyun
    Lee, Sangmin
    Lin, Zong-Hong
    NANOSCALE, 2020, 12 (34) : 17663 - 17697
  • [4] Stackable Triboelectric Nanogenerators for Self-Powered Marine Monitoring Buoy
    Dong, Jiale
    Wang, Hao
    Xiao, Xiu
    Du, Taili
    Zhao, Yunpeng
    Fan, Zhongqi
    Xu, Minyi
    2021 IEEE 16TH INTERNATIONAL CONFERENCE ON NANO/MICRO ENGINEERED AND MOLECULAR SYSTEMS (NEMS), 2021, : 660 - 664
  • [5] Triboelectric nanogenerators for a macro-scale blue energy harvesting and self-powered marine environmental monitoring system
    Chen, Huamin
    Xing, Chao
    Li, Yuliang
    Wang, Jun
    Xu, Yun
    SUSTAINABLE ENERGY & FUELS, 2020, 4 (03) : 1063 - 1077
  • [6] Advances in Triboelectric Nanogenerators for Self-powered Neuromodulation
    Elsanadidy, Esraa
    Mosa, Islam M.
    Luo, Dan
    Xiao, Xiao
    Chen, Jun
    Wang, Zhong Lin
    Rusling, James F.
    ADVANCED FUNCTIONAL MATERIALS, 2023, 33 (08)
  • [7] Recent advances in nature inspired triboelectric nanogenerators for self-powered systems
    Baosen Zhang
    Yunchong Jiang
    Tianci Ren
    Baojin Chen
    Renyun Zhang
    Yanchao Mao
    International Journal of Extreme Manufacturing, 2024, 6 (06) : 79 - 109
  • [8] Recent Advances in Self-Powered Electronic Skin Based on Triboelectric Nanogenerators
    Feng, Qingyang
    Wen, Yuzhang
    Sun, Fengxin
    Xie, Zhenning
    Zhang, Mengqi
    Wang, Yunlu
    Liu, Dongsheng
    Cheng, Zihang
    Mao, Yupeng
    Zhao, Chongle
    ENERGIES, 2024, 17 (03)
  • [9] Recent advances in nature inspired triboelectric nanogenerators for self-powered systems
    Zhang, Baosen
    Jiang, Yunchong
    Ren, Tianci
    Chen, Baojin
    Zhang, Renyun
    Mao, Yanchao
    INTERNATIONAL JOURNAL OF EXTREME MANUFACTURING, 2024, 6 (06)
  • [10] Advances in self-powered sports monitoring sensors based on triboelectric nanogenerators
    Fengxin Sun
    Yongsheng Zhu
    Changjun Jia
    Tianming Zhao
    Liang Chu
    Yupeng Mao
    Journal of Energy Chemistry, 2023, (04) : 477 - 488