首页
学术期刊
论文检测
AIGC检测
热点
更多
数据
On the conformal mapping of curvilinear angles. the functional equation phi [f (x) ] = alpha(1) phi (x)
被引:14
|
作者
:
Pfeiffer, G. A.
论文数:
0
引用数:
0
h-index:
0
Pfeiffer, G. A.
机构
:
来源
:
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY
|
1917年
/ 18卷
/ 1-4期
关键词
:
D O I
:
10.2307/1988860
中图分类号
:
O1 [数学];
学科分类号
:
0701 ;
070101 ;
摘要
:
引用
收藏
页码:185 / 198
页数:14
相关论文
共 50 条
[1]
STABILITY OF FUNCTIONAL EQUATION PHI[F(X)]=G(X)PHI(X)+F(X)
TURDZA, E
论文数:
0
引用数:
0
h-index:
0
TURDZA, E
[J].
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY,
1971,
30
(03)
: 484
-
&
[2]
STABILITY OF FUNCTIONAL EQUATION PHI F(X)!=G(X)PHI(X)+F(X)
BRYDAK, D
论文数:
0
引用数:
0
h-index:
0
BRYDAK, D
[J].
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY,
1970,
26
(03)
: 455
-
&
[3]
On a solution to the functional equation phi(x).phi(y) = phi(xy).
Ostrowski, A
论文数:
0
引用数:
0
h-index:
0
Ostrowski, A
[J].
ACTA MATHEMATICA,
1918,
41
(01)
: 271
-
284
[4]
FUNCTIONAL-EQUATION PHI(X)=G(X)PHI(BETA(X))+U(X)
BUCK, RC
论文数:
0
引用数:
0
h-index:
0
BUCK, RC
[J].
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY,
1972,
31
(01)
: 159
-
+
[5]
ON THE EQUATION PHI(X)+PHI(K)=PHI(X+K)
JONES, P
论文数:
0
引用数:
0
h-index:
0
机构:
UNIV SW LOUISIANA,LAFAYETTE,LA 70504
UNIV SW LOUISIANA,LAFAYETTE,LA 70504
JONES, P
[J].
FIBONACCI QUARTERLY,
1990,
28
(02):
: 162
-
165
[6]
ON EQUATION PHI(X) = INTEGRALX+1/X[K(XI)F[PHI(XI)]DXI)
SLATER, ML
论文数:
0
引用数:
0
h-index:
0
SLATER, ML
[J].
PACIFIC JOURNAL OF MATHEMATICS,
1967,
20
(01)
: 155
-
&
[7]
New solutions of the functional equation for the matrices phi(x) phi(y) = phi(xy)
Reisch, P
论文数:
0
引用数:
0
h-index:
0
Reisch, P
[J].
MATHEMATISCHE ZEITSCHRIFT,
1944,
49
: 411
-
426
[8]
SINGLE-VALLEY-EXTENDED CONTINUOUS SOLUTIONS FOR THE FEIGENBAUM'S FUNCTIONAL EQUATION f(phi(x)) = phi(2)(f(x))
Zhang, Min
论文数:
0
引用数:
0
h-index:
0
机构:
China Univ Petr, Coll Sci, Qingdao 266555, Shandong, Peoples R China
China Univ Petr, Coll Sci, Qingdao 266555, Shandong, Peoples R China
Zhang, Min
[J].
DEMONSTRATIO MATHEMATICA,
2014,
47
(03)
: 615
-
626
[9]
EQUATION PHI(Z)=PHI1(X)+PHI2(Y)+PHI3(X+Y)
BOGOLYUB.YI
论文数:
0
引用数:
0
h-index:
0
机构:
ACAD SCI USSR,MATH INST,NOVOSIBIRSK,USSR
ACAD SCI USSR,MATH INST,NOVOSIBIRSK,USSR
BOGOLYUB.YI
[J].
DOKLADY AKADEMII NAUK SSSR,
1973,
210
(04):
: 753
-
755
[10]
EQUATION PHI (X) = K
MENDELSOHN, NS
论文数:
0
引用数:
0
h-index:
0
机构:
UNIV MANITOBA,DEPT MATH,WINNIPEG R3T 2N2,MANITOBA,CANADA
UNIV MANITOBA,DEPT MATH,WINNIPEG R3T 2N2,MANITOBA,CANADA
MENDELSOHN, NS
[J].
NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY,
1975,
22
(02):
: A297
-
A297
←
1
2
3
4
5
→