The roles of discrete and continuous theories in physics

被引:10
|
作者
Ruark, A [1 ]
机构
[1] Univ Pittsburgh, Pittsburgh, PA USA
来源
PHYSICAL REVIEW | 1931年 / 37卷 / 03期
关键词
D O I
10.1103/PhysRev.37.315
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
引用
收藏
页码:315 / 326
页数:12
相关论文
共 50 条
  • [1] CONTINUOUS AND DISCRETE THEORIES OF DETECTION AND RECOGNITION
    RICHARDSON, JT
    BRITISH JOURNAL OF MATHEMATICAL & STATISTICAL PSYCHOLOGY, 1974, 27 (NOV): : 164 - 171
  • [2] Continuous and discrete effective nuclear physics
    Meissner, Ulf-G.
    IX INTERNATIONAL CONFERENCE ON QUARK CONFINEMENT AND THE HADRON SPECTRUM (QCHS IX), 2011, 1343 : 39 - 44
  • [3] The discrete versus continuous controversy in physics
    Lesne, Annick
    MATHEMATICAL STRUCTURES IN COMPUTER SCIENCE, 2007, 17 (02) : 185 - 223
  • [4] Continuous and discrete local hidden variable theories are equivalent
    Chen, Yanni
    Xiao, Shu
    Han, Kanyuan
    Guo, Zhihua
    Cao, Huaixin
    INFORMATION SCIENCES, 2023, 647
  • [5] A Discrete/Continuous Numerical Approach to Multi-physics
    Peters, B.
    Besseron, X.
    Estupinan, A.
    Mahmoudi, A.
    Mohseni, M.
    IFAC PAPERSONLINE, 2015, 48 (01): : 645 - 650
  • [6] Discrete or Continuous? The Quest for Fundamental Length in Modern Physics
    Blum, Alexander
    ISIS, 2016, 107 (02) : 424 - 425
  • [7] Separable potentials as a bridge between continuous and discrete scattering theories
    Sokolovsky, VV
    Popov, YV
    Gusev, AA
    Vinitsky, SI
    SARATOV FALL MEETING 2003: LASER PHYSICS AND PHOTONICS, SPECTROSCOPY, AND MOLECULAR MODELING IV, 2004, 5476 : 73 - 79
  • [8] Psychophysics without physics: extension of Fechnerian scaling from continuous to discrete and discrete-continuous stimulus spaces
    Dzhafarov, EN
    Colonius, H
    JOURNAL OF MATHEMATICAL PSYCHOLOGY, 2005, 49 (02) : 125 - 141
  • [9] An evolvable artificial chemistry featuring continuous physics and discrete reactions
    Portegys, TE
    ARTIFICIAL LIFE IX, 2004, : 484 - 488
  • [10] Discrete aspects of continuous symmetries in the tensorial formulation of Abelian gauge theories
    Meurice, Yannick
    PHYSICAL REVIEW D, 2020, 102 (01):