NUMERICAL STABILITY OF A CLASS (OF SYSTEMS) OF NONLINEAR EQUATIONS
被引:0
|
作者:
Udovicic, Zlatko
论文数: 0引用数: 0
h-index: 0
机构:
Fac Sci, Dept Math, Zmaja Bosne 35, Sarajevo 71000, Bosnia & HercegFac Sci, Dept Math, Zmaja Bosne 35, Sarajevo 71000, Bosnia & Herceg
Udovicic, Zlatko
[1
]
机构:
[1] Fac Sci, Dept Math, Zmaja Bosne 35, Sarajevo 71000, Bosnia & Herceg
来源:
MATEMATICKI VESNIK
|
2005年
/
57卷
/
1-2期
关键词:
Numerical stability;
nonlinear equations;
D O I:
暂无
中图分类号:
O1 [数学];
学科分类号:
0701 ;
070101 ;
摘要:
In this article we consider stability of nonlinear equations which have the following form: Ax + F (x) = b, (1) where F is any function, A is a linear operator, b is given and x is an unknown vector. We give (under some assumptions about function F and operator A) a generalization of inequality: parallel to X-1 - X-2 parallel to/parallel to X-1 parallel to <= parallel to A parallel to parallel to A(-1)parallel to parallel to b(1) - b(2)parallel to/parallel to b(1)parallel to (2) (equation (2) estimates the relative error of the solution when the linear equation Ax = b(1) becomes the equation Ax = b(2)) and a generalization of inequality: parallel to X-1 - X-2 parallel to/parallel to X-1 parallel to <= parallel to A(1)(-1)parallel to parallel to A(1)parallel to (b(1) - b(2)parallel to/parallel to b(1)parallel to + parallel to A(1)parallel to parallel to A(2)(-1)parallel to parallel to b(2)parallel to / parallel to b(1)parallel to . parallel to A(1) - A(2) parallel to/parallel to A(1)parallel to (3) (equation (3) estimates the relative error of the solution when the linear equation A(1)x = b(1) becomes the equation A(2)x = b(2)).
机构:
Univ Basque Country, Fac Sci & Technol, Inst Res & Dev Proc IIDP, Dept Elect & Elect, Bilbao 48080, SpainUniv Basque Country, Fac Sci & Technol, Inst Res & Dev Proc IIDP, Dept Elect & Elect, Bilbao 48080, Spain
机构:
MTA ELTE Numer Anal & Large Networks Res Grp, H-1117 Budapest, HungaryMTA ELTE Numer Anal & Large Networks Res Grp, H-1117 Budapest, Hungary
Csomos, Petra
Farago, Istvan
论文数: 0引用数: 0
h-index: 0
机构:
MTA ELTE Numer Anal & Large Networks Res Grp, H-1117 Budapest, Hungary
Eotvos Lorand Univ, Dept Appl Anal & Computat Math, H-1117 Budapest, HungaryMTA ELTE Numer Anal & Large Networks Res Grp, H-1117 Budapest, Hungary
Farago, Istvan
Fekete, Imre
论文数: 0引用数: 0
h-index: 0
机构:
MTA ELTE Numer Anal & Large Networks Res Grp, H-1117 Budapest, Hungary
Eotvos Lorand Univ, Dept Appl Anal & Computat Math, H-1117 Budapest, HungaryMTA ELTE Numer Anal & Large Networks Res Grp, H-1117 Budapest, Hungary