FAMILIES OF NEARLY PERFECT PARALLELEPIPEDS

被引:0
|
作者
D'Argenio, Daniel S. [1 ]
Reiter, Clifford A. [1 ]
机构
[1] Lafayette Coll, Easton, PA 18042 USA
关键词
perfect parallelepiped; perfect cuboid;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
It is unknown whether there are perfect parallelepipeds, that is, parallelepipeds with integer-length edges, face diagonals and body diagonals. A stronger version of the problem also requires the coordinates to be integer. In that case, the vectors are integer-length integer vectors. We will show how to extend integer length integer vectors in any dimension to one higher dimension and utilize that construction to present three parametric families of parallelepipeds that are nearly perfect in the sense that only two conditions need be satisfied in order for the parallelepiped to be perfect. Computer searches show many examples where either, but not both, of those conditions may be satisfied.
引用
收藏
页码:105 / 111
页数:7
相关论文
共 50 条
  • [1] PERFECT PARALLELEPIPEDS EXIST
    Sawyer, Jorge F.
    Reiter, Clifford A.
    MATHEMATICS OF COMPUTATION, 2011, 80 (274) : 1037 - 1040
  • [2] AN INFINITE FAMILY OF PERFECT PARALLELEPIPEDS
    Sokolowsky, Benjamin D.
    Vanhooft, Amy G.
    Volkert, Rachel M.
    Reiter, Clifford A.
    MATHEMATICS OF COMPUTATION, 2014, 83 (289) : 2441 - 2454
  • [3] FREE VIBRATIONS OF ISOTROPIC CUBES AND NEARLY CUBIC PARALLELEPIPEDS
    EKSTEIN, H
    SCHIFFMAN, T
    JOURNAL OF APPLIED PHYSICS, 1956, 27 (04) : 405 - 412
  • [4] Phase behavior of colloidal hard perfect tetragonal parallelepipeds
    John, Bettina S.
    Juhlin, Carol
    Escobedo, Fernando A.
    JOURNAL OF CHEMICAL PHYSICS, 2008, 128 (04):
  • [5] ON THE NONEXISTENCE OF PERFECT AND NEARLY PERFECT CODES
    HAMMOND, P
    DISCRETE MATHEMATICS, 1982, 39 (01) : 105 - 109
  • [6] A nearly perfect market?
    Brynjolfsson, Erik
    Dick, Astrid A.
    Smith, Michael D.
    QME-QUANTITATIVE MARKETING AND ECONOMICS, 2010, 8 (01): : 1 - 33
  • [7] NEARLY WORD PERFECT
    JOHANSSON, TSK
    AMERICAN BEE JOURNAL, 1994, 134 (07): : 446 - 446
  • [8] Perfecting the nearly perfect
    Burns, David
    PURE AND APPLIED MATHEMATICS QUARTERLY, 2008, 4 (04) : 1041 - 1058
  • [9] Nonbinary Sequences with Perfect and Nearly Perfect Autocorrelations
    Boztas, Serdar
    Parampalli, Udaya
    2010 IEEE INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY, 2010, : 1300 - 1304
  • [10] Waltz by Mathilde is nearly perfect
    Asker, JR
    AVIATION WEEK & SPACE TECHNOLOGY, 1997, 147 (01): : 25 - &