An Alternative Identification of Influential points in Cox Proportional Hazards Model
被引:0
|
作者:
Jiin, Rebecca Loo Ting
论文数: 0引用数: 0
h-index: 0
机构:
Univ Putra Malaysia, Dept Math, Fac Sci, Serdang 43400, MalaysiaUniv Putra Malaysia, Dept Math, Fac Sci, Serdang 43400, Malaysia
Jiin, Rebecca Loo Ting
[1
]
Fitrianto, Anwar
论文数: 0引用数: 0
h-index: 0
机构:
Univ Putra Malaysia, Dept Math, Fac Sci, Serdang 43400, Malaysia
Univ Putra Malaysia, Lab Appl & Computat Stat, Inst Math Res, Serdang 43400, Malaysia
Bogor Agr Univ, Fac Math & Nat Sci, Dept Stat, Bogor 16680, IndonesiaUniv Putra Malaysia, Dept Math, Fac Sci, Serdang 43400, Malaysia
Fitrianto, Anwar
[1
,2
,3
]
Rana, Sohel
论文数: 0引用数: 0
h-index: 0
机构:
Univ Putra Malaysia, Dept Math, Fac Sci, Serdang 43400, Malaysia
Univ Putra Malaysia, Lab Appl & Computat Stat, Inst Math Res, Serdang 43400, MalaysiaUniv Putra Malaysia, Dept Math, Fac Sci, Serdang 43400, Malaysia
Rana, Sohel
[1
,2
]
Midi, Habshah
论文数: 0引用数: 0
h-index: 0
机构:
Univ Putra Malaysia, Dept Math, Fac Sci, Serdang 43400, MalaysiaUniv Putra Malaysia, Dept Math, Fac Sci, Serdang 43400, Malaysia
Midi, Habshah
[1
]
机构:
[1] Univ Putra Malaysia, Dept Math, Fac Sci, Serdang 43400, Malaysia
[2] Univ Putra Malaysia, Lab Appl & Computat Stat, Inst Math Res, Serdang 43400, Malaysia
[3] Bogor Agr Univ, Fac Math & Nat Sci, Dept Stat, Bogor 16680, Indonesia
Influential diagnostics;
high leverage;
Cox proportional hazards model;
D O I:
暂无
中图分类号:
O29 [应用数学];
学科分类号:
070104 ;
摘要:
Influence diagnostics are essential in statistical modeling as the influential points have large effect on any statistical model. Thus, in this article, the identification of influential points in Cox proportional hazards model is considered. There are several diagnostics approaches in Cox proportional hazards model; these approaches are: score residual, scaled score residual, Lmax statistics, and likelihood displacement. We also propose a new diagnostics approach and compare its performance with the existing ones. It is found that the new proposed influential detection performs equally with the existing methods; it works to identify the influential observation.
机构:
Chugai Pharmaceut Co Ltd, Biometr Dept, Tokyo, Japan
Grad Univ Adv Studies, Dept Stat Sci, Tokyo, JapanChugai Pharmaceut Co Ltd, Biometr Dept, Tokyo, Japan
Ozaki, Ryoto
Ninomiya, Yoshiyuki
论文数: 0引用数: 0
h-index: 0
机构:
Grad Univ Adv Studies, Dept Stat Sci, Tokyo, Japan
Inst Stat Math, Dept Stat Inference & Math, Tokyo, Japan
Inst Stat Math, Dept Stat Inference & Math, 10-3 Midori Cho, Tachikawa Shi, Tokyo 1908562, JapanChugai Pharmaceut Co Ltd, Biometr Dept, Tokyo, Japan
机构:
Christian Med Coll & Hosp, Dept Biostat, Vellore 632002, Tamil Nadu, IndiaChristian Med Coll & Hosp, Dept Biostat, Vellore 632002, Tamil Nadu, India
Jeyaseelan, L
Walter, SD
论文数: 0引用数: 0
h-index: 0
机构:Christian Med Coll & Hosp, Dept Biostat, Vellore 632002, Tamil Nadu, India
Walter, SD
Shankar, V
论文数: 0引用数: 0
h-index: 0
机构:Christian Med Coll & Hosp, Dept Biostat, Vellore 632002, Tamil Nadu, India
Shankar, V
John, GT
论文数: 0引用数: 0
h-index: 0
机构:Christian Med Coll & Hosp, Dept Biostat, Vellore 632002, Tamil Nadu, India
John, GT
[J].
NATIONAL MEDICAL JOURNAL OF INDIA,
1999,
12
(05):
: 230
-
233