Computational methods for segmentation of the optic disc in retinal images: a review

被引:1
|
作者
Claro, Maila Lima [1 ]
Veras, Rodrigo [1 ]
Santos, Luis [1 ]
Frazao, Marcos [1 ]
Carvalho Filho, Antonio [2 ]
Leite, Daniel [1 ]
机构
[1] Univ Fed Piaui Teresina, Teresina, Piaui, Brazil
[2] Univ Fed Piaui Picos, Picos, Brazil
来源
关键词
Clustering Algorithms; Active Contour; Glaucoma; Mathematical Morphology; Convolutional Neural Network; Superpixel;
D O I
10.5335/rbca.v10i2.7661
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
The use of digital image processing techniques (DIP) is highlighted in the medical scenario for automatic diagnosis of pathologies. In the ophthalmologic area, glaucoma is the second leading cause of vision loss in the world and has no cure. Currently, treatments are used to prevent vision loss, but the disease must be discovered in the early stages. This paper aims to review the methodologies and techniques of optic disc and cup limits segmentation. These regions are used to calculate metrics for classiffication of glaucoma and assistance to professionals in the area. The most recent published studies were classified into five groups according to the central DIP technique applied: clustering, superpixel, active contour, mathematical morphology and Convolutional Neural Network. Also, a survey was conducted of the main images databases and evaluation metrics used.
引用
收藏
页码:29 / 43
页数:15
相关论文
共 50 条
  • [1] Optic disc segmentation in retinal images
    Marrugo, Andres G.
    Millan, Maria S.
    [J]. OPTICA PURA Y APLICADA, 2010, 43 (02): : 79 - 86
  • [2] Segmentation of Exudates and Optic Disc in Retinal Images
    Kande, Giri Babu
    Subbaiah, P. Venkata
    Savithri, T. Satya
    [J]. SIXTH INDIAN CONFERENCE ON COMPUTER VISION, GRAPHICS & IMAGE PROCESSING ICVGIP 2008, 2008, : 535 - +
  • [3] Texture Analysis for the Segmentation of Optic Disc in Retinal Images
    Mohammad, Suraya
    Morris, D. T.
    Thacker, Neil
    [J]. 2013 IEEE INTERNATIONAL CONFERENCE ON SYSTEMS, MAN, AND CYBERNETICS (SMC 2013), 2013, : 4265 - 4270
  • [4] Precise Segmentation of the Optic Disc in Retinal Fundus Images
    Fraga, A.
    Barreira, N.
    Ortega, M.
    Penedo, M. G.
    Carreira, M. J.
    [J]. COMPUTER AIDED SYSTEMS THEORY - EUROCAST 2011, PT I, 2012, 6927 : 584 - 591
  • [5] Hybrid Approach Optic Disc Segmentation for Retinal Images
    Tuncer, Seda Arslan
    Selcuk, Turab
    Parlak, Merve
    Alkan, Ahmet
    [J]. 2017 INTERNATIONAL ARTIFICIAL INTELLIGENCE AND DATA PROCESSING SYMPOSIUM (IDAP), 2017,
  • [6] Optic Disc Identification Methods for Retinal Images
    Rotaru, Florin
    Bejinariu, Silviu Joan
    Nita, Cristina Diana
    Luca, Ramona
    Lazar, Camelia
    [J]. COMPUTER SCIENCE JOURNAL OF MOLDOVA, 2014, 22 (02) : 186 - 210
  • [7] Thesholding Methods Review for the Location of the Optic Disc in Retinal Fundus Color Images
    Uribe-Valencia, Laura J.
    Martinez-Carballido, Jorge F.
    [J]. 2016 13TH INTERNATIONAL CONFERENCE ON ELECTRICAL ENGINEERING, COMPUTING SCIENCE AND AUTOMATIC CONTROL (CCE), 2016,
  • [8] Saliency-Based Segmentation of Optic Disc in Retinal Images
    ZOU Beiji
    LIU Qing
    YUE Kejuan
    CHEN Zailiang
    CHEN Jie
    ZHAO Guoying
    [J]. Chinese Journal of Electronics, 2019, 28 (01) : 71 - 75
  • [9] A Region Growing Method of Optic Disc Segmentation in Retinal Images
    Priyadharshini, Lydia Glory M.
    Anitha, J.
    [J]. 2014 INTERNATIONAL CONFERENCE ON ELECTRONICS AND COMMUNICATION SYSTEMS (ICECS), 2014,
  • [10] Two stages optic disc segmentation in digital retinal images
    Mariño, Castor
    Barreira, N.
    Penedo, M.G.
    Hortas, M.
    Doncel, J.L.
    Gómez-Ulla, F.
    [J]. WSEAS Transactions on Information Science and Applications, 2007, 4 (04): : 771 - 778