PH-DEPENDENCE OF THE ABSORBENCY AND P-31 NMR-SPECTRA OF O-ACETYLSERINE SULFHYDRYLASE IN THE ABSENCE AND PRESENCE OF O-ACETYL-L-SERINE

被引:64
|
作者
COOK, PF
HARA, S
NALABOLU, S
SCHNACKERZ, KD
机构
[1] TEXAS COLL OSTEOPATH MED,DEPT BIOCHEM & MOLEC BIOL,FT WORTH,TX 76107
[2] UNIV WURZBURG,DEPT PHYSIOL CHEM,W-8700 WURZBURG,GERMANY
关键词
D O I
10.1021/bi00123a013
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
O-Acetylserine sulfhydrylase (OASS) is a pyridoxal 5'-phosphate (PLP)-dependent enzyme which catalyzes the final step in the biosynthesis of L-cysteine in Salmonella, viz., the conversion of O-acetyl-L-serine (OAS) and sulfide to L-cysteine and acetate. UV-visible spectra of OASS exhibit absorbance maxima at 280 and 412 nm with pH-independent extinction coefficients over the range 5.5-10.8. Addition of OAS to enzyme results in a shift in the absorbance maximum from 412 to 470 nm, indicating the formation of an alpha-aminoacrylate Schiff base intermediate [Cook, P. F., & Wedding, R. T. (1976) J. Biol. Chem. 251, 2023]. The spectrum of the intermediate is also pH independent from 5.5 to 9.2. The observed changes in absorbance at 470 nm at different concentrations of OAS were used to calculate a K(d) of 3-mu-M for OAS at pH 6.9. As the pH decreases, the K(d) increases an order of magnitude per pH unit. The P-31 NMR signal of the bound PLP has a pH-independent chemical shift of 5.2 ppm in the presence and absence of OAS. These results indicate that the phosphate group is present as the dianion possibly salt-bridged to positively charged groups of the protein. In agreement with this, the resonance at 5.2 ppm has a line width of 20.5 Hz, suggesting that the cofactor is tightly bound to the protein. The sulfhydrylase was also shown to catalyze an OAS deacetylase activity in which OAS is degraded to pyruvate, ammonia, and acetate. The activity was detected by a time-dependent disappearance of the 470-nm absorbance reflecting the alpha-aminoacrylate intermediate. The rate of disappearance of the intermediate was measured at pH values from 7 to 9.5 using equal concentrations of OAS and OASS. The rate constant for disappearance of the intermediate decreases below a pK of 8.1 +/- 0.1, reflecting the deprotonation of the active-site lysine that originally formed the Schiff base with PLP in free enzyme. A possible mechanism for the deacetylase activity is presented where the lysine displaces alpha-aminoacrylate which decomposes to pyruvate and ammonia.
引用
收藏
页码:2298 / 2303
页数:6
相关论文
共 18 条