The mineralogy of five soils situated on a south-west to north-cast transect of Guanxi Province, south-east China was determined by X-ray diffraction (XRD), transmission electron microscopy (TEM), differential thermal analysis (DTA) and chemical composition. One soil had formed on granite under tropical conditions, the others on sedimentary rocks under subtropical conditions. In all soils, kaolinite dominates the clay fractions, and is accompanied by vermiculite or chloritized vermiculite. In the saprolites of the granite-derived and sandstone-derived soils, the kaolinite has a morphology close to that of hydrated halloysite. The formamide and hydrazine/water tests suggested the presence of both poorly-crystalline (dehydrated halloysite) and well-ordered kaolinite. Gibbsite was identified in the saprolites of the granite-derived and sandstone-derived soils but not in the soils themselves. Gibbsite was also identified in the lowermost horizon of a soil derived from Pleistocene sediments. The upper horizon clay of a Rendzina soil formed on Permian limestone contains much more gibbsite and is much more weathered than the corresponding lower horizon clay. Only in the more humid, southernmost soil can the mineral composition be explained by present-day climatic conditions. In the soils from drier areas, the clay mineral composition reflects weathering that had taken place under moister, paleoclimatic conditions. Some of these paleoclimatic conditions had been conducive to lateritic weathering, as is indicated by the presence of goethite-containing pisolitic nodules in one of the soils and in its parent material. Two of the soils appear to be polymorphic, with one part of the soil having weathered more strongly than the other part.