REMARKS ON THE COVARIANT HAMILTONIAN FORMALISM FOR VECTORIAL FIELDS

被引:0
|
作者
LIOTTA, RS
机构
来源
NUOVO CIMENTO | 1959年 / 14卷 / 02期
关键词
D O I
暂无
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
引用
收藏
页码:442 / 447
页数:6
相关论文
共 50 条
  • [1] COVARIANT HAMILTONIAN FORMALISM FOR QUANTIZED FIELDS AND HYDROGEN MASS LEVELS
    ENATSU, H
    KAWAGUCHI, S
    [J]. NUOVO CIMENTO DELLA SOCIETA ITALIANA DI FISICA A-NUCLEI PARTICLES AND FIELDS, 1975, 27 (04): : 458 - 481
  • [2] Weyl gravity in covariant hamiltonian formalism
    Kluson, J.
    Matous, B.
    [J]. CLASSICAL AND QUANTUM GRAVITY, 2023, 40 (24)
  • [3] Lorentz-Covariant Hamiltonian formalism
    Bérard, A
    Mohrbach, H
    Gosselin, P
    [J]. INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 2000, 39 (04) : 1055 - 1068
  • [4] Lorentz-Covariant Hamiltonian Formalism
    A. Bérard
    H. Mohrbach
    P. Gosselin
    [J]. International Journal of Theoretical Physics, 2000, 39 : 1055 - 1068
  • [5] Covariant canonical formalism of fields
    Mashkour, MA
    [J]. INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 1998, 37 (02) : 785 - 797
  • [6] Covariant Canonical Formalism of Fields
    M. A. Mashkour
    [J]. International Journal of Theoretical Physics, 1998, 37 : 785 - 797
  • [7] Moyal product for (n-1)-forms within the covariant Hamiltonian formalism for fields
    Berra-Montiel, Jasel
    Molgado, Alberto
    Serrano-Blanco, David
    [J]. XI MEXICAN SCHOOL ON GRAVITATION AND MATHEMATICAL PHYSICS, QUANTUM GRAVITY: SCHEMES, MODELS AND PHENOMENOLOGY, 2018, 1030
  • [8] Covariant Hamiltonian formalism for F(R)-gravity
    J. Klusoň
    B. Matouš
    [J]. General Relativity and Gravitation, 2021, 53
  • [9] Covariant Hamiltonian formalism for F(R)-gravity
    Kluson, J.
    Matous, B.
    [J]. GENERAL RELATIVITY AND GRAVITATION, 2021, 53 (11)
  • [10] A manifestly covariant Hamiltonian formalism for dynamical geometry
    Nester, James M.
    [J]. PROGRESS OF THEORETICAL PHYSICS SUPPLEMENT, 2008, (172): : 30 - 39