Histopathological Breast-Image Classification Using Local and Frequency Domains by Convolutional Neural Network

被引:77
|
作者
Nahid, Abdullah-Al [1 ]
Kong, Yinan [1 ]
机构
[1] Macquarie Univ, Sch Engn, Sydney, NSW 2109, Australia
关键词
classification; Convolutional Neural Network; Contourlet Transform; Histogram; Discrete Fourier Transform; Discrete Cosine Transform; Local Binary Pattern;
D O I
10.3390/info9010019
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Identification of the malignancy of tissues from Histopathological images has always been an issue of concern to doctors and radiologists. This task is time-consuming, tedious and moreover very challenging. Success in finding malignancy from Histopathological images primarily depends on long-term experience, though sometimes experts disagree on their decisions. However, Computer Aided Diagnosis (CAD) techniques help the radiologist to give a second opinion that can increase the reliability of the radiologist's decision. Among the different image analysis techniques, classification of the images has always been a challenging task. Due to the intense complexity of biomedical images, it is always very challenging to provide a reliable decision about an image. The state-of-the-art Convolutional Neural Network (CNN) technique has had great success in natural image classification. Utilizing advanced engineering techniques along with the CNN, in this paper, we have classified a set of Histopathological Breast-Cancer (BC) images utilizing a state-of-the-art CNN model containing a residual block. Conventional CNN operation takes raw images as input and extracts the global features; however, the object oriented local features also contain significant information-for example, the Local Binary Pattern (LBP) represents the effective textural information, Histogram represent the pixel strength distribution, Contourlet Transform (CT) gives much detailed information about the smoothness about the edges, and Discrete Fourier Transform (DFT) derives frequency-domain information from the image. Utilizing these advantages, along with our proposed novel CNN model, we have examined the performance of the novel CNN model as Histopathological image classifier. To do so, we have introduced five cases: (a) Convolutional Neural Network Raw Image (CNN-I); (b) Convolutional Neural Network CT Histogram (CNN-CH); (c) Convolutional Neural Network CT LBP (CNN-CL); (d) Convolutional Neural Network Discrete Fourier Transform (CNN-DF); (e) Convolutional Neural Network Discrete Cosine Transform (CNN-DC). We have performed our experiments on the BreakHis image dataset. The best performance is achieved when we utilize the CNN-CH model on a 200x dataset that provides Accuracy, Sensitivity, False Positive Rate, False Negative Rate, Recall Value, Precision and F-measure of 92.19%, 94.94%, 5.07%, 1.70%, 98.20%, 98.00% and 98.00%, respectively.
引用
收藏
页数:26
相关论文
共 50 条
  • [1] Histopathological Breast-Image Classification With Image Enhancement by Convolutional Neural Network
    Abdullah-Al Nahid
    Bin Ali, Ferdous
    Kong, Yinan
    2017 20TH INTERNATIONAL CONFERENCE OF COMPUTER AND INFORMATION TECHNOLOGY (ICCIT), 2017,
  • [2] Imbalanced Histopathological Breast Cancer Image Classification with Convolutional Neural Network
    Reza, Md Shamim
    Ma, Jinwen
    PROCEEDINGS OF 2018 14TH IEEE INTERNATIONAL CONFERENCE ON SIGNAL PROCESSING (ICSP), 2018, : 619 - 624
  • [3] Breast Cancer Histopathological Image Classification Utilizing Convolutional Neural Network
    Tuan Dinh Truong
    Hien Thi-Thu Pham
    7TH INTERNATIONAL CONFERENCE ON THE DEVELOPMENT OF BIOMEDICAL ENGINEERING IN VIETNAM (BME7): TRANSLATIONAL HEALTH SCIENCE AND TECHNOLOGY FOR DEVELOPING COUNTRIES, 2020, 69 : 531 - 536
  • [4] Breast Cancer Histopathological Image Classification using Convolutional Neural Networks
    Spanhol, Fabio Alexandre
    Oliveira, Luiz S.
    Petitjean, Caroline
    Heutte, Laurent
    2016 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2016, : 2560 - 2567
  • [5] Breast Cancer Classification in Histopathological Images using Convolutional Neural Network
    Al Rahhal, Mohamad Mahmoud
    INTERNATIONAL JOURNAL OF ADVANCED COMPUTER SCIENCE AND APPLICATIONS, 2018, 9 (03) : 64 - 68
  • [6] Convolutional Neural Network for Histopathological Osteosarcoma Image Classification
    Ahmed, Imran
    Sardar, Humaira
    Aljuaid, Hanan
    Khan, Fakhri Alam
    Nawaz, Muhammad
    Awais, Adnan
    CMC-COMPUTERS MATERIALS & CONTINUA, 2021, 69 (03): : 3365 - 3381
  • [7] Multi-classification of breast cancer histopathological image using enhanced shallow convolutional neural network
    Musa Yusuf
    Armand Florentin Donfack Kana
    Mustapha Aminu Bagiwa
    Mohammed Abdullahi
    Journal of Engineering and Applied Science, 2025, 72 (1):
  • [8] Convolutional Neural Networks for Breast Cancer Histopathological Image Classification
    Angara, Sandeep
    Robinson, Melvin
    Guillen-Rondon, Pablo
    2018 4TH INTERNATIONAL CONFERENCE ON BIG DATA AND INFORMATION ANALYTICS (BIGDIA), 2018,
  • [9] Improved convolutional neural network based histopathological image classification
    Rachapudi, Venubabu
    Devi, G. Lavanya
    EVOLUTIONARY INTELLIGENCE, 2021, 14 (03) : 1337 - 1343
  • [10] Improved convolutional neural network based histopathological image classification
    Venubabu Rachapudi
    G. Lavanya Devi
    Evolutionary Intelligence, 2021, 14 : 1337 - 1343