A Modified Proximal Gradient Method for a Class of Sparse Optimization Problems

被引:0
|
作者
Li, Yingyi [1 ,2 ]
Zhang, Haibin [1 ]
Zhang, Rong [3 ]
机构
[1] Beijing Univ Technol, Coll Appl Sci, Beijing 100124, Peoples R China
[2] Hebei Finance Univ, Dept Basic Courses, Baoding 071051, Peoples R China
[3] Case Western Reserve Univ, Weatherhead Sch Management, Cleveland, OH 44106 USA
关键词
Nonsmooth convex optimization; signal processing; modified proximal gradient method; Q-linear convergence;
D O I
10.1142/S0218539318500274
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
In this paper, we propose a modified proximal gradient method for a class of sparse optimization problems. which arise in many contemporary statistical and signal processing applications. The new method uses a new scheme to construct the descent direction based on the proximal gradient method. It is proven that the modified proximal gradient method is Q-linearly convergent without the assumption of the strong convexity of the objective function. Numerical experiments have been conducted to evaluate the proposed method.
引用
收藏
页数:13
相关论文
共 50 条
  • [1] Scaled Proximal Gradient Methods for Sparse Optimization Problems
    Guiyun Xiao
    Shuqin Zhang
    Zheng-Jian Bai
    [J]. Journal of Scientific Computing, 2024, 98
  • [2] Scaled Proximal Gradient Methods for Sparse Optimization Problems
    Xiao, Guiyun
    Zhang, Shuqin
    Bai, Zheng-Jian
    [J]. JOURNAL OF SCIENTIFIC COMPUTING, 2024, 98 (01)
  • [3] A Modified Proximal Gradient Method for a Family of Nonsmooth Convex Optimization Problems
    Li Y.-Y.
    Zhang H.-B.
    Li F.
    [J]. Journal of the Operations Research Society of China, 2017, 5 (3) : 391 - 403
  • [4] General inertial proximal gradient method for a class of nonconvex nonsmooth optimization problems
    Zhongming Wu
    Min Li
    [J]. Computational Optimization and Applications, 2019, 73 : 129 - 158
  • [5] General inertial proximal gradient method for a class of nonconvex nonsmooth optimization problems
    Wu, Zhongming
    Li, Min
    [J]. COMPUTATIONAL OPTIMIZATION AND APPLICATIONS, 2019, 73 (01) : 129 - 158
  • [6] A MULTILEVEL PROXIMAL GRADIENT ALGORITHM FOR A CLASS OF COMPOSITE OPTIMIZATION PROBLEMS
    Parpas, Panos
    [J]. SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2017, 39 (05): : S681 - S701
  • [7] Proximal Gradient Method for Solving Bilevel Optimization Problems
    Yimer, Seifu Endris
    Kumam, Poom
    Gebrie, Anteneh Getachew
    [J]. MATHEMATICAL AND COMPUTATIONAL APPLICATIONS, 2020, 25 (04)
  • [8] MODIFIED CONJUGATE GRADIENT METHOD FOR OPTIMIZATION PROBLEMS
    PIERSON, BL
    [J]. INTERNATIONAL JOURNAL OF CONTROL, 1972, 16 (06) : 1193 - +
  • [9] Partial gradient optimal thresholding algorithms for a class of sparse optimization problems
    Meng, Nan
    Zhao, Yun-Bin
    Kocvara, Michal
    Sun, Zhongfeng
    [J]. JOURNAL OF GLOBAL OPTIMIZATION, 2022, 84 (02) : 393 - 413
  • [10] Partial gradient optimal thresholding algorithms for a class of sparse optimization problems
    Nan Meng
    Yun-Bin Zhao
    Michal Kočvara
    Zhongfeng Sun
    [J]. Journal of Global Optimization, 2022, 84 : 393 - 413