SYMMETRIES IN STOCHASTIC QUANTIZATION AND ITO-STRATONOVICH RELATED INTERPRETATION

被引:21
|
作者
NAKAZATO, H
OKANO, K
SCHULKE, L
YAMANAKA, Y
机构
[1] UNIV RYUKYUS,DEPT PHYS,NAHA,OKINAWA 903,JAPAN
[2] UNIV ALBERTA,DEPT PHYS,EDMONTON T6G 2J1,ALBERTA,CANADA
关键词
D O I
10.1016/0550-3213(90)90295-O
中图分类号
O412 [相对论、场论]; O572.2 [粒子物理学];
学科分类号
摘要
Symmetries of a (D + 1)-dimensional stochastic action which represents the dynamics of the stochastic quantization are discussed. Their relation to the interpretation of the Langevin equation (Ito- or Stratonovich-related) is investigated. On this rigorous basis of interpretation of the Langevin equation we also discuss the relation between the symmetries of the stochastic action and boundary conditions. © 1990.
引用
收藏
页码:611 / 631
页数:21
相关论文
共 50 条
  • [1] A SPATIAL VERSION OF THE ITO-STRATONOVICH CORRECTION
    Hairer, Martin
    Maas, Jan
    [J]. ANNALS OF PROBABILITY, 2012, 40 (04): : 1675 - 1714
  • [2] The Ito-Stratonovich formula for an operator of order four
    Leandre, Remi
    [J]. PROBABILITY ON ALGEBRAIC AND GEOMETRIC STRUCTURES, 2016, 668 : 165 - 169
  • [3] An Ito-Stratonovich formula for Gaussian processes: A Riemann sums approach
    Nualart, D.
    Ortiz-Latorre, S.
    [J]. STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 2008, 118 (10) : 1803 - 1819
  • [4] On the connection between dissipative particle dynamics and the Ito-Stratonovich dilemma
    Farago, Oded
    Gronbech-Jensen, Niels
    [J]. JOURNAL OF CHEMICAL PHYSICS, 2016, 144 (08):
  • [5] Brownian colloidal particles: Ito, Stratonovich, or a different stochastic interpretation
    Sancho, J. M.
    [J]. PHYSICAL REVIEW E, 2011, 84 (06):
  • [6] Time evolution towards q-Gaussian stationary states through unified Ito-Stratonovich stochastic equation
    dos Santos, B. Coutinho
    Tsallis, C.
    [J]. PHYSICAL REVIEW E, 2010, 82 (06):
  • [7] Langevin dynamics in inhomogeneous media: Re- examining the Ito-Stratonovich dilemma
    Farago, Oded
    Gronbech-Jensen, Niels
    [J]. PHYSICAL REVIEW E, 2014, 89 (01)
  • [8] STRATONOVICH AND ITO STOCHASTIC TAYLOR EXPANSIONS
    KLOEDEN, PE
    PLATEN, E
    [J]. MATHEMATISCHE NACHRICHTEN, 1991, 151 : 33 - 50
  • [9] State-dependent jump processes: Ito-Stratonovich interpretations, potential, and transient solutions
    Bartlett, Mark S.
    Porporato, Amilcare
    [J]. PHYSICAL REVIEW E, 2018, 98 (05)
  • [10] Ito-Stratonovich dilemma in the problem of laser cooling of atoms: limits of applicability of the semiclassical approximation
    Kirpichnikova, A. A.
    Prudnikov, O. N.
    Taichenachev, A., V
    Yudin, V., I
    [J]. QUANTUM ELECTRONICS, 2022, 52 (02) : 130 - 136