Image Clustering Using Active-Constraint Semi-Supervised Affinity Propagation

被引:0
|
作者
Lei, Qi [1 ,2 ]
Liu, Jun [1 ]
Wu, Min [3 ]
Wang, Jie [1 ]
机构
[1] Cent South Univ, Sch Informat Sci & Engn, Changsha 410083, Hunan, Peoples R China
[2] Univ South Wales, Sch Engn, Pontypridd CF37 1DL, M Glam, Wales
[3] China Univ Geosci, Sch Automat, Wuhan 430074, Peoples R China
基金
中国国家自然科学基金;
关键词
image clustering; affinity propagation; active learning; image feature extraction;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Image clustering is an effective way to discover and analyze large quantities of image data. The HSV color space is particularly advantageous in image feature extraction because of its relatively prominent feature vector. The objective of this study is to develop an image clustering method using the active-constraint semi-supervised affinity propagation (ACSSAP) algorithm. The algorithm adds supervision to the affinity propagation (AP) clustering algorithm with pairwise constraints and uses active learning to guide the AP clustering algorithm. Active learning of pairwise constraints leads to an adjustment of the similarity matrix in AP at each iteration. In the experiments, the advantage of HSV space is analyzed and the ACSSAP algorithm is evaluated for data sets of different sizes in comparison with other algorithms. The result demonstrates that the ACSSAP has better performance.
引用
收藏
页码:1035 / 1043
页数:9
相关论文
共 50 条
  • [1] A semi-supervised affinity propagation clustering method with homogeneity constraint
    Xu M.-L.
    Wang S.-T.
    Hang W.-L.
    [J]. Zidonghua Xuebao/Acta Automatica Sinica, 2016, 42 (02): : 255 - 269
  • [2] Constraint projections for semi-supervised affinity propagation
    Wang, Hongjun
    Nie, Ruihua
    Liu, Xingnian
    Li, Tianrui
    [J]. KNOWLEDGE-BASED SYSTEMS, 2012, 36 : 315 - 321
  • [3] Semi-Supervised Selective Affinity Propagation Ensemble Clustering With Active Constraints
    Lei, Qi
    Li, Ting
    [J]. IEEE ACCESS, 2020, 8 : 46255 - 46266
  • [4] Unsupervised and semi-supervised clustering by message passing: soft-constraint affinity propagation
    Leone, M.
    Sumedha
    Weigt, M.
    [J]. EUROPEAN PHYSICAL JOURNAL B, 2008, 66 (01): : 125 - 135
  • [5] Unsupervised and semi-supervised clustering by message passing: soft-constraint affinity propagation
    M. Leone Sumedha
    M. Weigt
    [J]. The European Physical Journal B, 2008, 66 : 125 - 135
  • [6] Semi-supervised clustering based on affinity propagation algorithm
    Xiao, Yu
    Yu, Jian
    [J]. Ruan Jian Xue Bao/Journal of Software, 2008, 19 (11): : 2803 - 2813
  • [7] Clustering ECG heartbeat using improved semi-supervised affinity propagation
    Wang, Ludi
    Zhou, Xiaoguang
    Xing, Ying
    Yang, Mengke
    Zhang, Chi
    [J]. IET SOFTWARE, 2017, 11 (05) : 207 - 213
  • [8] Fuzzy Semi-supervised Clustering with Active Constraint Selection
    Novoselova, Natalia
    Tom, Igor
    [J]. PATTERN RECOGNITION AND INFORMATION PROCESSING, 2017, 673 : 132 - 139
  • [9] Active Semi-supervised Affinity Propagation Clustering Algorithm based on Local Outlier Factor
    Qi, Lei
    Ting, Li
    [J]. 2018 37TH CHINESE CONTROL CONFERENCE (CCC), 2018, : 9368 - 9373
  • [10] Improved Semi-supervised Clustering Algorithm Based on Affinity Propagation
    金冉
    刘瑞娟
    李晔锋
    寇春海
    [J]. Journal of Donghua University(English Edition), 2015, 32 (01) : 125 - 131