'nparACT' package for R: A free software tool for the non-parametric analysis of actigraphy data

被引:106
|
作者
Blume, Christine [1 ,2 ]
Santhi, Nayantara [3 ]
Schabus, Manuel [1 ,2 ]
机构
[1] Salzburg Univ, CCNS, Hellbrunner Str 34, A-5020 Salzburg, Austria
[2] Salzburg Univ, Lab Sleep Cognit & Consciousness Res, Hellbrunner Str 34, A-5020 Salzburg, Austria
[3] Univ Surrey, Fac Hlth & Med Sci, Surrey Sleep Res Ctr, Egerton Rd, Guildford GU2 7XP, Surrey, England
来源
METHODSX | 2016年 / 3卷
基金
奥地利科学基金会;
关键词
Actigraphy; R; Sleep; Circadian rhythm; Zeitgeber; Internal clock; Amplitude;
D O I
10.1016/j.mex.2016.05.006
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
For many studies, participants' sleep-wake patterns are monitored and recorded prior to, during and following an experimental or clinical intervention using actigraphy, i.e. the recording of data generated by movements. Often, these data are merely inspected visually without computation of descriptive parameters, in part due to the lack of user-friendly software. To address this deficit, we developed a package for R Core Team [ 6], that allows computing several non-parametric measures from actigraphy data. Specifically, it computes the interdaily stability (IS), intradaily variability (IV) and relative amplitude (RA) of activity and gives the start times and average activity values of M10 (i.e. the ten hours with maximal activity) and L5 (i.e. the five hours with least activity). Two functions compute these 'classical' parameters and handle either single or multiple files. Two other functions additionally allow computing an L-value (i.e. the least activity value) for a user-defined time span termed 'Lflex' value. A plotting option is included in all functions. The package can be downloaded from the Comprehensive R Archives Network (CRAN). The package 'nparACT' for R serves the non-parametric analysis of actigraphy data. Computed parameters include interdaily stability (IS), intradaily variability (IV) and relative amplitude (RA) as well as start times and average activity during the 10 h with maximal and the 5 h with minimal activity (i.e. M10 and L5). (C) 2016 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
引用
收藏
页码:430 / 435
页数:6
相关论文
共 50 条
  • [1] Software reliability analysis using parametric and non-parametric
    Aljahdali, S
    Sheta, A
    Habib, M
    [J]. COMPUTERS AND THEIR APPLICATIONS, 2003, : 63 - 66
  • [2] Diffprot - software for non-parametric statistical analysis of differential proteomics data
    Malinowska, Agata
    Kistowski, Michal
    Bakun, Magda
    Rubel, Tymon
    Tkaczyk, Marta
    Mierzejewska, Jolanta
    Dadlez, Michal
    [J]. JOURNAL OF PROTEOMICS, 2012, 75 (13) : 4062 - 4073
  • [3] Mixed Non-Parametric and Parametric Estimation Techniques in R Package etasFLP for Earthquakes' Description
    Chiodi, Marcello
    Adelfio, Giada
    [J]. JOURNAL OF STATISTICAL SOFTWARE, 2017, 76 (03):
  • [4] rNPBST: An R Package Covering Non-parametric and Bayesian Statistical Tests
    Carrasco, Jacinto
    Garcia, Salvador
    del Mar Rueda, Maria
    Herrera, Francisco
    [J]. HYBRID ARTIFICIAL INTELLIGENT SYSTEMS, HAIS 2017, 2017, 10334 : 281 - 292
  • [5] Predictors of Software Metric Correlation: A Non-parametric Analysis
    Afriyie, Daniel
    Labiche, Yvan
    [J]. 2021 IEEE 21ST INTERNATIONAL CONFERENCE ON SOFTWARE QUALITY, RELIABILITY AND SECURITY (QRS 2021), 2021, : 524 - 533
  • [6] An R function to non-parametric and piecewise analysis of competing risks survival data
    Fillerona, Thomas
    Laplanche, Agnes
    Boher, Jean-Marie
    Kramar, Andrew
    [J]. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE, 2010, 100 (01) : 24 - 38
  • [7] nucleR: a package for non-parametric nucleosome positioning
    Flores, Oscar
    Orozco, Modesto
    [J]. BIOINFORMATICS, 2011, 27 (15) : 2149 - 2150
  • [8] A non-parametric approach to software reliability
    Gandy, A
    Jensen, U
    [J]. APPLIED STOCHASTIC MODELS IN BUSINESS AND INDUSTRY, 2004, 20 (01) : 3 - 15
  • [9] Parametric and non-parametric statistical analysis of DT-MRI data
    Pajevic, S
    Basser, PJ
    [J]. JOURNAL OF MAGNETIC RESONANCE, 2003, 161 (01) : 1 - 14
  • [10] Non-parametric Nevada Format Field Data Analysis
    Zhang, Jiliang
    [J]. 2018 ANNUAL RELIABILITY AND MAINTAINABILITY SYMPOSIUM (RAMS), 2018,