Stationary Bootstrapping for the Nonparametric AR-ARCH Model

被引:1
|
作者
Shin, Dong Wan [1 ]
Hwang, Eunju [2 ]
机构
[1] Ewha Womans Univ, Dept Stat, Seoul, South Korea
[2] Gachon Univ, Dept Appl Stat, Seongnam 13120, South Korea
关键词
stationary bootstrap; ARCH; nonparametric regression; consistency;
D O I
10.5351/CSAM.2015.22.5.463
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We consider a nonparametric AR(1) model with nonparametric ARCH(1) errors. In order to estimate the unknown function of the ARCH part, we apply the stationary bootstrap procedure, which is characterized by geometrically distributed random length of bootstrap blocks and has the advantage of capturing the dependence structure of the original data. The proposed method is composed of four steps: the first step estimates the AR part by a typical kernel smoothing to calculate AR residuals, the second step estimates the ARCH part via the Nadaraya-Watson kernel from the AR residuals to compute ARCH residuals, the third step applies the stationary bootstrap procedure to the ARCH residuals, and the fourth step defines the stationary bootstrapped Nadaraya-Watson estimator for the ARCH function with the stationary bootstrapped residuals. We prove the asymptotic validity of the stationary bootstrap estimator for the unknown ARCH function by showing the same limiting distribution as the Nadaraya-Watson estimator in the second step.
引用
收藏
页码:463 / 473
页数:11
相关论文
共 50 条
  • [1] Specification testing in nonparametric AR-ARCH models
    Huskova, Marie
    Neumeyer, Natalie
    Niebuhr, Tobias
    Selk, Leonie
    SCANDINAVIAN JOURNAL OF STATISTICS, 2019, 46 (01) : 26 - 58
  • [2] Bootstrapping the nonparametric ARCH regression model
    Shimizu, Kenichi
    STATISTICS & PROBABILITY LETTERS, 2014, 87 : 61 - 69
  • [3] Estimation and Asymptotic Inference in the AR-ARCH Model
    Lange, Theis
    Rahbek, Anders
    Jensen, Soren Tolver
    ECONOMETRIC REVIEWS, 2011, 30 (02) : 129 - 153
  • [4] A note on the geometric ergodicity of a nonlinear AR-ARCH model
    Meitz, Mika
    Saikkonen, Pentti
    STATISTICS & PROBABILITY LETTERS, 2010, 80 (7-8) : 631 - 638
  • [5] Two dimensional noncausal AR-ARCH model: Stationary conditions, parameter estimation and its application to anomaly detection
    Mousazadeh, Saman
    Cohen, Israel
    SIGNAL PROCESSING, 2014, 98 : 322 - 336
  • [6] Properties of some statistics for AR-ARCH model with application to technical analysis
    Huang, Xudong
    Liu, Wei
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2009, 225 (02) : 522 - 530
  • [7] Coefficient constancy test in AR-ARCH models
    Ha, JC
    Lee, SY
    STATISTICS & PROBABILITY LETTERS, 2002, 57 (01) : 65 - 77
  • [8] MCMC methods for periodic AR-ARCH models
    Polasek, W
    PERIODIC CONTROL SYSTEMS 2001, 2002, : 67 - 70
  • [9] AR-ARCH模型的局部影响分析
    吕敏红
    赵鹏
    纺织高校基础科学学报, 2012, 25 (01) : 5 - 8+12
  • [10] AR-ARCH Type Artificial Neural Network for Forecasting
    Corba, Burcin Seyda
    Egrioglu, Erol
    Dalar, Ali Zafer
    NEURAL PROCESSING LETTERS, 2020, 51 (01) : 819 - 836