PROPAGATING CONFINED STATES IN PHASE DYNAMICS

被引:12
|
作者
BRAND, HR
DEISSLER, RJ
机构
[1] UNIV ESSEN GESAMTHSCH, DEPT PHYS, W-4300 ESSEN 1, GERMANY
[2] NASA, LEWIS RES CTR, ICOMP, CLEVELAND, OH 44135 USA
来源
PHYSICAL REVIEW A | 1992年 / 46卷 / 02期
关键词
D O I
10.1103/PhysRevA.46.888
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
We show that the nonlinear phase equation that applies to propagating patterns allows for a large range of parameter values for propagating confined states for which a spatially localized region with wavelengths different from that of the background travels on this background. This phenomenon is the generalization of the stationary confined states predicted a few years ago by the authors, which have since been seen experimentally in various systems. We suggest that the propagating confined states found here could arise in spirals in Taylor vortex flow or in convective systems showing traveling waves far above onset. We find that the propagating confined states can be replaced by a pattern that is irregular in space and time as the control parameter in the nonlinear phase equation is varied.
引用
收藏
页码:888 / 892
页数:5
相关论文
共 50 条
  • [1] CONFINED STATES IN PHASE DYNAMICS
    BRAND, HR
    DEISSLER, RJ
    [J]. PHYSICAL REVIEW LETTERS, 1989, 63 (05) : 508 - 511
  • [2] PROPERTIES OF CONFINED STATES IN PHASE DYNAMICS
    BRAND, HR
    DEISSLER, RJ
    [J]. PHYSICAL REVIEW A, 1990, 41 (10): : 5478 - 5481
  • [3] Transition from propagating localized states to spatiotemporal chaos in phase dynamics
    Brand, HR
    Deissler, RJ
    [J]. PHYSICAL REVIEW E, 1998, 58 (04): : R4064 - R4067
  • [4] Dynamics of propagating phase boundaries in NiTi
    Niemczura, J.
    Ravi-Chandar, K.
    [J]. JOURNAL OF THE MECHANICS AND PHYSICS OF SOLIDS, 2006, 54 (10) : 2136 - 2161
  • [5] CONFINED STATES IN PHASE DYNAMICS - THE INFLUENCE OF BOUNDARY-CONDITIONS AND TRANSIENT-BEHAVIOR
    DEISSLER, RJ
    LEE, YC
    BRAND, HR
    [J]. PHYSICAL REVIEW A, 1990, 42 (04): : 2101 - 2113
  • [6] PHASE DYNAMICS FOR A PROPAGATING CELLULAR-PATTERN
    OHTA, T
    KAWASAKI, K
    [J]. PHYSICS LETTERS A, 1985, 111 (05) : 227 - 230
  • [7] EUCLIDEAN INVARIANT PHASE DYNAMICS FOR PROPAGATING PATTERN
    OHTA, T
    KAWASAKI, K
    [J]. PHYSICA D, 1987, 27 (1-2): : 21 - 42
  • [8] Dynamics of skyrmionic states in confined helimagnetic nanostructures
    Beg, Marijan
    Albert, Maximilian
    Bisotti, Marc-Antonio
    Cortes-Ortuno, David
    Wang, Weiwei
    Carey, Rebecca
    Vousden, Mark
    Hovorka, Ondrej
    Ciccarelli, Chiara
    Spencer, Charles S.
    Marrows, Christopher H.
    Fangohr, Hans
    [J]. PHYSICAL REVIEW B, 2017, 95 (01)
  • [9] AMPLITUDE AND PHASE FLUCTUATIONS OF A CONFINED WAVE BEAM PROPAGATING IN A RANDOMLY INHOMOGENEOUS MEDIUM
    FEYZULIN, ZI
    [J]. RADIO ENGINEERING AND ELECTRONIC PHYSICS-USSR, 1970, 15 (07): : 1189 - &
  • [10] Dynamics and phase behaviour of materials in confined geometry
    Decressain, R
    Mansare, T
    Cochin, E
    [J]. PHASE TRANSITIONS, 2003, 76 (9-10) : 807 - 813