A CONDITION FOR A HAMILTONIAN BIPARTITE GRAPH TO BE BIPANCYCLIC

被引:2
|
作者
AMAR, D
机构
[1] LABRI, U.A. C.N.R.S. 726, Université Bordeaux I, 33405 Talence Cedex, 351, Cours de la Libération
关键词
D O I
10.1016/0012-365X(92)90116-W
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let G be a hamiltonian bipartite graph of order 2n and let C = (x1, y1, x2, y2, . . . , x(n), y(n), x1) be a hamiltonian cycle of G. G is said to be bipancyclic if it contains a cycle of length 2l, for every 1, 2 less-than-or-equal-to l less-than-or-equal-to n. Suppose the vertices x, and X2 are such that d(x1) + d(X2) greater-than-or-equal-to n + 1. Then G is either: (1) bipancyclic, (2) missing a 4-cycle (then n is odd and the structure of G is known), (3) missing a (n + 1)-cycle (then n is odd and the structure of G is known).
引用
收藏
页码:221 / 227
页数:7
相关论文
共 50 条