THE F-DECOMPOSITION OF ARTINIAN-MODULES OVER HYPERFINITE GROUPS

被引:1
|
作者
DUAN, ZY [1 ]
机构
[1] SW TEACHERS UNIV,DEPT MATH,CHONGQING 630715,PEOPLES R CHINA
关键词
D O I
10.1017/S0013091500006246
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A ZG-module A is said to have an f-decomposition if A=A(f) circle plus A(($) over bar f) in which A(f) is a EG-submodule of A such that each irreducible ZG-factor of A(f) as an abelian group is finite and the HG-submodule A(($) over bar f) has no finite irreducible ZG-Factors. Tn this paper, we prove that: if G is a hyperfinite group then any artinian ZG-module A has an f-decomposition, which gives a positive answer to the question raised by D.I. Zaitzev in 1986.
引用
收藏
页码:117 / 120
页数:4
相关论文
共 50 条