MATROID;
COMMON BASIS;
PIVOT OPERATION;
ENUMERATION;
D O I:
10.1016/0166-218X(94)00088-U
中图分类号:
O29 [应用数学];
学科分类号:
070104 ;
摘要:
In this paper, we present an algorithm for finding all common bases in two matroids. Our algorithm lists all common bases by using pivot operations in such a way that each basis appears exactly once. The time complexity of the algorithm is O(n(n(2) + t)lambda) where n is the size of the ground set of the matroids, lambda is the number of common bases, and t is time to make one pivot operation. The space complexity is O(n(2)) and thus does not depend on lambda. As applications, we show how our algorithm can be applied to efficient enumerations of all complementary bases in the linear complementarity problem and all perfect matchings in a bipartite graph.
机构:
Eotvos Lorand Univ, Dept Operat Res, MIA ELIE Egervary Res Grp, Budapest, HungaryEotvos Lorand Univ, Dept Operat Res, MIA ELIE Egervary Res Grp, Budapest, Hungary
Berczi, Kristof
Schwarcz, Tamas
论文数: 0引用数: 0
h-index: 0
机构:
Eotvos Lorand Univ, Budapest, HungaryEotvos Lorand Univ, Dept Operat Res, MIA ELIE Egervary Res Grp, Budapest, Hungary
机构:
Univ British Columbia, Dept Comp Sci, Vancouver, BC V6T 1Z4, CanadaUniv British Columbia, Dept Comp Sci, Vancouver, BC V6T 1Z4, Canada
Harvey, Nicholas J. A.
Kiraly, Tamas
论文数: 0引用数: 0
h-index: 0
机构:
Eotvos Lorand Univ, Dept Operat Res, MTA ELTE Egervary Res Grp, Budapest, HungaryUniv British Columbia, Dept Comp Sci, Vancouver, BC V6T 1Z4, Canada
Kiraly, Tamas
Lau, Lap Chi
论文数: 0引用数: 0
h-index: 0
机构:
Chinese Univ Hong Kong, Dept Comp Sci & Engn, Shatin, Hong Kong, Peoples R ChinaUniv British Columbia, Dept Comp Sci, Vancouver, BC V6T 1Z4, Canada