ADJOINT FERMION MATRIX MODELS

被引:19
|
作者
MAKEENKO, Y [1 ]
ZAREMBO, K [1 ]
机构
[1] STEKLOV MATH INST,117966 MOSCOW,RUSSIA
关键词
D O I
10.1016/0550-3213(94)00061-1
中图分类号
O412 [相对论、场论]; O572.2 [粒子物理学];
学科分类号
摘要
We study fermionic one-matrix, two-matrix and D-dimensional gauge invariant matrix models. In all cases we derive loop equations which unambiguously determine the large-N solution. For the one-matrix case the solution is obtained for an arbitrary interaction potential and turns out to be equivalent to the one for the hermitian one-matrix model with a logarithmic potential and, therefore, belongs to the same universality class. The explicit solutions for the fermionic two-matrix and D-dimensional matrix models are obtained at large N (or in the spherical approximation) for the quadratic potential.
引用
收藏
页码:237 / 257
页数:21
相关论文
共 50 条
  • [1] Matrix models: fermion doubling versus anomaly
    Sochichiu, C
    PHYSICS LETTERS B, 2000, 485 (1-3) : 202 - 207
  • [2] RADIATIVE FERMION MASS MATRIX GENERATION IN SUPERSYMMETRIC MODELS
    PAPANTONOPOULOS, E
    ZOUPANOS, G
    JOURNAL OF PHYSICS G-NUCLEAR AND PARTICLE PHYSICS, 1984, 10 (01) : 1 - 10
  • [3] Dual of QCD with one adjoint fermion
    Mojaza, Matin
    Nardecchia, Marco
    Pica, Claudio
    Sanninox, Francesco
    PHYSICAL REVIEW D, 2011, 83 (06):
  • [4] Fermion determinants in matrix models of QCD at nonzero chemical potential
    Halasz, MA
    Jackson, AD
    Verbaarschot, JJM
    PHYSICAL REVIEW D, 1997, 56 (08) : 5140 - 5152
  • [5] THE QUARK MIXING MATRIX IN MODELS WITH A NATURAL FERMION MASS HIERARCHY
    CONKIE, A
    FROGGATT, CD
    NIELSEN, HB
    PHYSICS LETTERS B, 1985, 161 (4-6) : 347 - 351
  • [6] ON THE MATRIX ADJOINT (ADJUGATE)
    HILL, RD
    UNDERWOOD, EE
    SIAM JOURNAL ON ALGEBRAIC AND DISCRETE METHODS, 1985, 6 (04): : 731 - 737
  • [7] An Adjoint Matrix of a Real Idempotent Matrix
    Jin Bai Kim (Dept. of Math.
    数学研究与评论, 1997, (03) : 18 - 22
  • [8] Computation of the adjoint matrix
    Akritasi, Alkiviadis
    Malaschonok, Gennadi
    COMPUTATIONAL SCIENCE - ICCS 2006, PT 2, PROCEEDINGS, 2006, 3992 : 486 - 489
  • [9] The adjoint alternative for matrix operators
    Cooke, CH
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 1998, 35 (05) : 79 - 81
  • [10] Adjoint alternative for matrix operators
    Old Dominion Univ, Norfolk, United States
    Comput Math Appl, 5 (79-81):