VARIATIONAL HENSTOCK INTEGRABILITY OF BANACH SPACE VALUED FUNCTIONS

被引:11
|
作者
Di Piazza, Luisa [1 ]
Marraffa, Valeria [1 ]
Musia, Kazimierz [2 ]
机构
[1] Univ Palermo, Dept Math, Via Archirafi 34, I-90123 Palermo, Italy
[2] Wroclaw Univ, Inst Math, Pl Grunwaldzki 2-4, PL-50384 Wroclaw, Poland
来源
MATHEMATICA BOHEMICA | 2016年 / 141卷 / 02期
关键词
Kurzweil-Henstock integral; variational Henstock integral; Pettis integral;
D O I
10.21136/MB.2016.19
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study the integrability of Banach space valued strongly measurable functions defined on [0, 1]. In the case of functions f given by Sigma(infinity)(n=1) x(n) chi(En), where x(n) are points of a Banach space and the sets E-n are Lebesgue measurable and pairwise disjoint subsets of [0, 1], there are well known characterizations for Bochner and Pettis integrability of f. The function f is Bochner integrable if and only if the series Sigma(infinity)(n=1) x(n)vertical bar E-n vertical bar is absolutely convergent. Unconditional convergence of the series is equivalent to Pettis integrability of f. In this paper we give some conditions for variational Henstock integrability of a certain class of such functions.
引用
收藏
页码:287 / 296
页数:10
相关论文
共 50 条