A NOTE ON THE CANCELLATION PROPERTIES OF SEMISTAR OPERATIONS

被引:0
|
作者
Chapman, S. T. [1 ]
Matsuda, Ryuki [2 ]
机构
[1] Sam Houston State Univ, Dept Math & Stat, Huntsville, TX 77341 USA
[2] Ibaraki Univ, Mito, Ibaraki, Japan
关键词
semistar operation;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
If D is an integral domain with quotient field K, then let F(D) be the set of non-zero D-submodules of K, F(D) be the set of non-zero fractional ideals of D and f(D) be the set of non-zero finitely generated D-submodules of K. A semistar operation * on D is called arithmetisch brauchbar (or a.b.) if, for every H is an element of f(D) and every H-1, H-2 is an element of F(D), (H H-1)* = (H H-2)* implies H-1(*) = H-2(*), and * is called endlich arithmetisch brauchbar (or e.a.b.) if the same holds for every F, F-1, F-2 is an element of f(D). In this note, we introduce the notion of strongly arithmetisch brauchbar (or s.a.b.) and consider relationships among semistar operations suggested by other related cancellation properties.
引用
收藏
页码:78 / 86
页数:9
相关论文
共 50 条