BOUNDEDNESS RELATIONS IN LINEAR SEMI-INFINITE PROGRAMMING

被引:3
|
作者
GOBERNA, MA
机构
关键词
D O I
10.1016/0196-8858(87)90005-4
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
引用
收藏
页码:53 / 68
页数:16
相关论文
共 50 条
  • [1] Parametric linear semi-infinite programming
    Lin, CJ
    Fang, SC
    Wu, SY
    [J]. APPLIED MATHEMATICS LETTERS, 1996, 9 (03) : 89 - 96
  • [2] A LADDER METHOD FOR LINEAR SEMI-INFINITE PROGRAMMING
    Liu, Yanqun
    Ding, Ming-Fang
    [J]. JOURNAL OF INDUSTRIAL AND MANAGEMENT OPTIMIZATION, 2014, 10 (02) : 397 - 412
  • [3] Duality for inexact semi-infinite linear programming
    Gómez, JA
    Bosch, PJ
    Amaya, J
    [J]. OPTIMIZATION, 2005, 54 (01) : 1 - 25
  • [4] DUALITY IN SEMI-INFINITE LINEAR-PROGRAMMING
    DUFFIN, RJ
    JEROSLOW, RG
    KARLOVITZ, LA
    [J]. LECTURE NOTES IN ECONOMICS AND MATHEMATICAL SYSTEMS, 1983, 215 : 50 - 62
  • [5] SEMIDEFINITE PROGRAMMING RELAXATIONS FOR LINEAR SEMI-INFINITE POLYNOMIAL PROGRAMMING
    Guo, Feng
    Sun, Xiaoxia
    [J]. PACIFIC JOURNAL OF OPTIMIZATION, 2020, 16 (03): : 395 - 418
  • [6] An unconstrained convex programming approach to linear semi-infinite programming
    Lin, CJ
    Fang, SC
    Wu, SY
    [J]. SIAM JOURNAL ON OPTIMIZATION, 1998, 8 (02) : 443 - 456
  • [7] Semi-infinite programming
    Lopez, Marco
    Still, Georg
    [J]. EUROPEAN JOURNAL OF OPERATIONAL RESEARCH, 2007, 180 (02) : 491 - 518
  • [8] Understanding linear semi-infinite programming via linear programming over cones
    Zhang, Qinghong
    [J]. OPTIMIZATION, 2010, 59 (08) : 1247 - 1258
  • [9] Linear semi-infinite programming theory:: An updated survey
    Goberna, MA
    López, MA
    [J]. EUROPEAN JOURNAL OF OPERATIONAL RESEARCH, 2002, 143 (02) : 390 - 405
  • [10] Asymptotic optimality conditions for linear semi-infinite programming
    Liu, Y.
    Goberna, M. A.
    [J]. OPTIMIZATION, 2016, 65 (02) : 387 - 414