Global dominating sets in minimum coloring

被引:1
|
作者
Hamid, I. Sahul [1 ]
Rajeswari, M. [2 ]
机构
[1] Madura Coll, Dept Math, Madurai, Tamil Nadu, India
[2] Fatima Coll, Dept Math, Madurai, Tamil Nadu, India
关键词
Dominating-chi-coloring; global dominating-chi-coloring;
D O I
10.1142/S179383091450044X
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we introduce the concept of global dominating-chi-coloring of a graph and the corresponding parameter namely global dominating-chi-color number. Let G be a graph. Among all chi-colorings of G, a coloring with the maximum number of color classes that are global dominating sets in G is called a global dominating-chi-coloring of G. The number of color classes that are global dominating sets in a global dominating-chi-coloring of G is defined to be the global dominating-chi-color number of G, denoted by gd chi(G).
引用
收藏
页数:13
相关论文
共 50 条
  • [1] ON MINIMUM DOMINATING SETS WITH MINIMUM INTERSECTION
    GRINSTEAD, DL
    SLATER, PJ
    [J]. DISCRETE MATHEMATICS, 1990, 86 (1-3) : 239 - 254
  • [2] Maximum Number of Minimum Dominating and Minimum Total Dominating Sets
    Godbole, Anant
    Jamieson, Jessie D.
    Jamieson, William
    [J]. UTILITAS MATHEMATICA, 2014, 94 : 269 - 274
  • [3] On the number of minimum dominating sets and total dominating sets in forests
    Petr, Jan
    Portier, Julien
    Versteegen, Leo
    [J]. JOURNAL OF GRAPH THEORY, 2024, 106 (04) : 976 - 993
  • [4] MINIMUM EDGE DOMINATING SETS
    HORTON, JD
    KILAKOS, K
    [J]. SIAM JOURNAL ON DISCRETE MATHEMATICS, 1993, 6 (03) : 375 - 387
  • [5] MINIMUM DOMINATING SETS WITH MINIMUM STATUS IN GRAPHS
    Bhanumathi, M.
    Niroja, R.
    [J]. ADVANCES AND APPLICATIONS IN DISCRETE MATHEMATICS, 2022, 33 : 73 - 96
  • [6] On the Number of Minimum Dominating Sets in Trees
    Taletskii, D. S.
    [J]. MATHEMATICAL NOTES, 2023, 113 (3-4) : 552 - 566
  • [7] Minimum dominating sets of intervals on lines
    Cheng, SW
    Kaminski, M
    Zaks, S
    [J]. COMPUTING AND COMBINATORICS, 1995, 959 : 520 - 529
  • [8] Majorization and the minimum number of dominating sets
    Skupien, Zdzislaw
    [J]. DISCRETE APPLIED MATHEMATICS, 2014, 165 : 295 - 302
  • [9] Reconfiguring minimum dominating sets in trees
    Lemańska, Magdalena
    Żyliński, Pawe̷l
    [J]. Journal of Graph Algorithms and Applications, 2020, 24 (01) : 47 - 61
  • [10] Counting minimum weighted dominating sets
    Fomin, Fedor V.
    Stepanov, Alexey A.
    [J]. COMPUTING AND COMBINATORICS, PROCEEDINGS, 2007, 4598 : 165 - +