DOMINATION SEQUENCES OF GRAPHS

被引:0
|
作者
COCKAYNE, EJ [1 ]
MYNHARDT, CM [1 ]
机构
[1] UNIV VICTORIA,VICTORIA V8W 2Y2,BC,CANADA
关键词
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A dominating set X of a graph G is a k -minimal dominating set of G iff the removal of any l less-than-or-equal-to k vertices from X followed by the addition of any l-1 vertices of G results in a set which does not dominate G. The k-minimal domination number LAMBDA(k)(G) of G is the largest number of vertices in a k-minimal dominating set of G. The sequence R: m1 greater-than-or-equal-to m2 greater-than-or-equal-to ... greater-than-or-equal-to m(k) greater-than-or-equal-to ... greater-than-or-equal-to n of positive integers is a domination sequence iff there exists a graph G such that LAMBDA-1(G) = m1, LAMBDA-2(G) = m2,..., LAMBDA(k)(G) = m(k),..., and gamma(G) = n, where gamma(G) denotes the domination number of G. We give sufficient conditions for R to be a domination sequence.
引用
收藏
页码:257 / 275
页数:19
相关论文
共 50 条
  • [1] GRUNDY DOMINATION SEQUENCES IN GENERALIZED CORONA PRODUCTS OF GRAPHS
    Majd, Seyedeh Maryam Moosavi
    Maimani, Hamid Reza
    [J]. FACTA UNIVERSITATIS-SERIES MATHEMATICS AND INFORMATICS, 2020, 35 (04): : 1231 - 1237
  • [2] On -Domination in Graphs
    Das, Angsuman
    Laskar, Renu C.
    Rad, Nader Jafari
    [J]. GRAPHS AND COMBINATORICS, 2018, 34 (01) : 193 - 205
  • [3] Domination sequences
    Brigham, RC
    Carrington, JR
    Vitray, RP
    [J]. ARS COMBINATORIA, 2000, 57 : 13 - 31
  • [4] Generalized domination and efficient domination in graphs
    Bange, DW
    Barkauskas, AE
    Host, LH
    Slater, PJ
    [J]. DISCRETE MATHEMATICS, 1996, 159 (1-3) : 1 - 11
  • [5] DOMINATION AND INDEPENDENT DOMINATION NUMBERS OF GRAPHS
    SEIFTER, N
    [J]. ARS COMBINATORIA, 1994, 38 : 119 - 128
  • [6] Domination versus disjunctive domination in graphs
    Henning, Michael A.
    Marcon, Sinclair A.
    [J]. QUAESTIONES MATHEMATICAE, 2016, 39 (02) : 261 - 273
  • [7] Graphs that are simultaneously efficient open domination and efficient closed domination graphs
    Klavzar, Sandi
    Peterin, Iztok
    Yero, Ismael G.
    [J]. DISCRETE APPLIED MATHEMATICS, 2017, 217 : 613 - 621
  • [8] Revisiting Domination, Hop Domination, and Global Hop Domination in Graphs
    Salasalan, Gemma
    Canoy Jr, Sergio R.
    [J]. EUROPEAN JOURNAL OF PURE AND APPLIED MATHEMATICS, 2021, 14 (04): : 1415 - 1428
  • [9] Unique irredundance, domination and independent domination in graphs
    Fischermann, M
    Volkmann, L
    Zverovich, I
    [J]. DISCRETE MATHEMATICS, 2005, 305 (1-3) : 190 - 200
  • [10] Domination in signed graphs
    Jeyalakshmi, P.
    [J]. DISCRETE MATHEMATICS ALGORITHMS AND APPLICATIONS, 2021, 13 (01)