THREE NONTRIVIAL SOLUTIONS FOR NEUMANN PROBLEMS RESONANT AT ANY POSITIVE EIGENVALUE

被引:1
|
作者
Kyritsi, Sophia Th. [1 ]
Papageorgiou, Nikolaos S. [2 ]
机构
[1] Hellen Naval Acad, Dept Math, Piraeus 18539, Greece
[2] Natl Tech Univ Athens, Dept Math, Athens 15780, Greece
来源
MATEMATICHE | 2010年 / 65卷 / 02期
关键词
Resonance; Concave term; Unique continuation property; Ekeland variational principle; Critical groups; Morse relation; Nondegenerate critical point;
D O I
10.4418/2010.65.2.10
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We consider a semilinear Neumann problem with a parametric reaction which has a concave term and a perturbation which at +/-infinity can be resonant with respect to any positive eigenvalue. Using variational methods based on the critical point theory and Morse theory, we show that there exists a critical parameter value lambda* > 0 such that if lambda is an element of (0, lambda*), then the problem has at least three nontrivial smooth solutions.
引用
收藏
页码:79 / 95
页数:17
相关论文
共 50 条