Oscillation Theorems for Higher Order Periodic Linear Differential Equations
被引:0
|
作者:
Xiao, L. P.
论文数: 0引用数: 0
h-index: 0
机构:
Jiangxi Normal Univ, Inst Math & Informat, Nanchang 330022, Jiangxi, Peoples R ChinaJiangxi Normal Univ, Inst Math & Informat, Nanchang 330022, Jiangxi, Peoples R China
Xiao, L. P.
[1
]
Chen, Z. X.
论文数: 0引用数: 0
h-index: 0
机构:
South China Normal Univ, Sch Math Sci, Guangzhou 510631, Guangdong, Peoples R ChinaJiangxi Normal Univ, Inst Math & Informat, Nanchang 330022, Jiangxi, Peoples R China
Chen, Z. X.
[2
]
机构:
[1] Jiangxi Normal Univ, Inst Math & Informat, Nanchang 330022, Jiangxi, Peoples R China
[2] South China Normal Univ, Sch Math Sci, Guangzhou 510631, Guangdong, Peoples R China
In this paper, we investigate the higher linear differential equation Y-(k) + Sigma(k-2)(j-0) A(j)(z)y((j))(z) = 0, where k >= 3 and A(0),center dot center dot center dot, A(k-2) are entire functions of period 2 pi i, with Al the dominant coefficient. We obtain that under certain condition, every non -trivial solution of Eq. (*) satisfies the exponent of convergence of zeros equals to infinity.
机构:
Jiangxi Normal Univ, Inst Math & Informat, Nanchang 330022, Peoples R ChinaJiangxi Normal Univ, Inst Math & Informat, Nanchang 330022, Peoples R China
机构:
Jiangxi Normal Univ, Inst Math & Informat, Nanchang 330022, Peoples R ChinaJiangxi Normal Univ, Inst Math & Informat, Nanchang 330022, Peoples R China
Xiao Lipeng
Chen Zongxuan
论文数: 0引用数: 0
h-index: 0
机构:
S China Normal Univ, Sch Math Sci, Guangzhou 510631, Guangdong, Peoples R ChinaJiangxi Normal Univ, Inst Math & Informat, Nanchang 330022, Peoples R China