ISOMETRY GROUPS OF 3-DIMENSIONAL RIEMANNIAN METRICS

被引:11
|
作者
BONA, C [1 ]
COLL, B [1 ]
机构
[1] INST POINCARE,PHYS THEOR GRAVITAT & COSMOL RELATIVISTES LAB,F-75231 PARIS 05,FRANCE
关键词
D O I
10.1063/1.529960
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The necessary and sufficient conditions for a three-dimensional Riemannian metric to admit a group G(r) of isometries acting on s-dimensional orbits are given. This provides the list of (abstract) groups that can act isometrically and maximally on such metrics. The conditions are expressed in terms of the eigenvalues and eigenvectors of the Ricci tensor. In any case, the order of differentiability of these data necessary to determine the isometry group is less than 4.
引用
收藏
页码:267 / 272
页数:6
相关论文
共 50 条
  • [1] ON THE ISOMETRY GROUPS OF THE 3-DIMENSIONAL RIEMANNIAN METRICS
    BONA, C
    COLL, B
    [J]. COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1990, 310 (11): : 791 - 794
  • [2] ISOMETRY GROUPS OF 3-DIMENSIONAL LORENTZIAN METRICS
    BONA, C
    COLL, B
    [J]. JOURNAL OF MATHEMATICAL PHYSICS, 1994, 35 (02) : 873 - 884
  • [3] Locally symmetric left invariant Riemannian metrics on 3-dimensional Lie groups
    Nimpa, R. Pefoukeu
    Ngaha, M. B. Djiadeu
    Wouafo, J. Kamga
    [J]. MATHEMATISCHE NACHRICHTEN, 2017, 290 (14-15) : 2341 - 2355
  • [4] ON RIEMANNIAN METRICS ADAPTED TO 3-DIMENSIONAL CONTACT MANIFOLDS
    CHERN, SS
    HAMILTON, RS
    WEINSTEIN, A
    [J]. LECTURE NOTES IN PHYSICS, 1984, 1111 : 279 - 308
  • [5] Isometry groups of unimodular simply connected 3-dimensional Lie groups
    Shin, J
    [J]. GEOMETRIAE DEDICATA, 1997, 65 (03) : 267 - 290
  • [6] Isometry Groups of Unimodular Simply Connected 3-Dimensional Lie Groups
    JOONKOOK SHIN
    [J]. Geometriae Dedicata, 1997, 65 : 267 - 290
  • [7] The isometry groups of simply connected 3-dimensional unimodular Lie groups
    Ha, Ku Yong
    Lee, Jong Bum
    [J]. JOURNAL OF GEOMETRY AND PHYSICS, 2012, 62 (02) : 189 - 203
  • [8] 3-DIMENSIONAL RIEMANNIAN METRICS WITH PRESCRIBED RICCI PRINCIPAL CURVATURES
    SPIRO, A
    TRICERRI, F
    [J]. JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 1995, 74 (03): : 253 - 271
  • [9] The isometry groups of Riemannian orbifolds
    A. V. Bagaev
    N. I. Zhukova
    [J]. Siberian Mathematical Journal, 2007, 48 : 579 - 592
  • [10] ISOMETRY GROUPS OF RIEMANNIAN FIBRATIONS
    FISCHER, HR
    FISHER, RJ
    [J]. GEOMETRIAE DEDICATA, 1989, 29 (03) : 249 - 258