SOME RESULTS ON 2(N-K) FRACTIONAL FACTORIAL-DESIGNS AND SEARCH FOR MINIMUM ABERRATION DESIGNS

被引:61
|
作者
CHEN, JH
机构
来源
ANNALS OF STATISTICS | 1992年 / 20卷 / 04期
关键词
DEFINING CONTRASTS SUBGROUP; EQUIVALENCE OF DESIGNS; FRACTIONAL FACTORIAL DESIGN; INTEGER LINEAR PROGRAMMING; ISOMORPHISM; MINIMUM ABERRATION DESIGN; MINIMUM VARIANCE DESIGN; RESOLUTION; WORD-LENGTH PATTERN;
D O I
10.1214/aos/1176348907
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
In this paper we find several interesting properties of 2n-k fractional factorial designs. An upper bound is given for the length of the longest word in the defining contrasts subgroup. We obtain minimum aberration 2n-k designs for k = 5 and any n. Furthermore, we give a method to test the equivalence of fractional factorial designs and prove that minimum aberration 2n-k designs for k less-than-or-equal-to 4 are unique.
引用
收藏
页码:2124 / 2141
页数:18
相关论文
共 50 条