CROSSOVER EFFECTS IN THE WOLF-VILLAIN MODEL OF EPITAXIAL-GROWTH IN 1+1 AND 2+1 DIMENSIONS

被引:58
|
作者
SMILAUER, P
KOTRLA, M
机构
[1] UNIV LONDON IMPERIAL COLL SCI TECHNOL & MED,BLACKETT LAB,DEPT PHYS,LONDON SW7 2BZ,ENGLAND
[2] CZECHOSLOVAK ACAD SCI,INST PHYS,CS-18040 PRAGUE 8,CZECH REPUBLIC
来源
PHYSICAL REVIEW B | 1994年 / 49卷 / 08期
关键词
D O I
10.1103/PhysRevB.49.5769
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
A simple model of epitaxial growth proposed by Wolf and Villain is investigated using extensive computer simulations. We find an unexpectedly complex crossover behavior of the original model in both 1+1 and 2+1 dimensions. A crossover from the effective growth exponent beta(eff) almost-equal-to 0.37 to beta(eff) almost-equal-to 0.33 is observed in 1+1 dimensions, whereas additional crossovers, which we believe are to the scaling behavior of an Edwards-Wilkinson type, are observed in both 1+1 and 2+1 dimensions. Anomalous scaling due to power-law growth of the average step height is found in 1+1 dimensions, and also at short time and length scales in 2+1 dimensions. The roughness exponents zeta(eff)c obtained from the height-height correlation functions in 1+1 dimensions (almost-equal-to 3/4) and 2+1 dimensions (almost-equal-to 2/3) cannot be simultaneously explained by any of the continuum equations proposed so far to describe epitaxial growth.
引用
收藏
页码:5769 / 5772
页数:4
相关论文
共 50 条
  • [1] SURFACE DYNAMICS OF THE WOLF-VILLAIN MODEL FOR EPITAXIAL-GROWTH IN 1+1 DIMENSIONS
    PARK, K
    KAHNG, B
    KIM, SS
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 1994, 210 (1-2) : 146 - 154
  • [2] Asymptotic dynamic scaling behavior of the (1+1)-dimensional Wolf-Villain model
    Xun, Zhipeng
    Tang, Gang
    Han, Kui
    Xia, Hui
    Hao, Dapeng
    Li, Yan
    PHYSICAL REVIEW E, 2012, 85 (04):
  • [3] Conformal Invariance of Isoheight Lines of the (2+1)-Dimensional Wolf-Villain Surfaces
    Yuling Chen
    Gang Tang
    Kui Han
    Hui Xia
    Dapeng Hao
    Zhipeng Xun
    Rongji Wen
    Journal of Statistical Physics, 2011, 143 : 501 - 508
  • [4] Conformal Invariance of Isoheight Lines of the (2+1)-Dimensional Wolf-Villain Surfaces
    Chen, Yuling
    Tang, Gang
    Han, Kui
    Xia, Hui
    Hao, Dapeng
    Xun, Zhipeng
    Wen, Rongji
    JOURNAL OF STATISTICAL PHYSICS, 2011, 143 (03) : 501 - 508
  • [5] Schramm-Loewner evolution theory of the asymptotic behaviors of (2+1)-dimensional Wolf-Villain model
    Chen, Yili
    Tang, Gang
    Xun, Zhipeng
    Zhu, Lei
    Zhang, Zhe
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2017, 465 : 613 - 620
  • [6] 1+1维Wolf-Villain模型奇异标度行为的数值模拟
    寻之朋
    唐刚
    韩奎
    夏辉
    郝大鹏
    周伟
    杨细全
    计算物理, 2009, 26 (02) : 287 - 292
  • [7] Universality and crossover behavior of single-step growth models in 1+1 and 2+1 dimensions
    Daryaei, E.
    PHYSICAL REVIEW E, 2020, 101 (06)
  • [8] Solitons in 1+1 and 2+1 dimensions
    Beccaria, M.
    Konopelchenko, B. G.
    Landolfi, G.
    Martina, L.
    Pogrebkov, A. K.
    THEORETICAL AND MATHEMATICAL PHYSICS, 2012, 172 (02) : 1035 - 1036
  • [9] Solitons in 1+1 and 2+1 dimensions
    M. Beccaria
    B. G. Konopelchenko
    G. Landolfi
    L. Martina
    A. K. Pogrebkov
    Theoretical and Mathematical Physics, 2012, 172 : 1035 - 1036
  • [10] Mirror symmetry in 2+1 and 1+1 dimensions
    Aganagic, M
    Hori, K
    Karch, A
    Tong, D
    JOURNAL OF HIGH ENERGY PHYSICS, 2001, (07):