A POLYNOMIAL APPROACH TO FAST ALGORITHMS FOR DISCRETE FOURIER-COSINE AND FOURIER-SINE TRANSFORMS

被引:0
|
作者
STEIDL, G
TASCHE, M
机构
关键词
DISCRETE FOURIER-COSINE TRANSFORM; DISCRETE FOURIER-SINE TRANSFORM; DISCRETE COSINE TRANSFORM; POLYNOMIAL ARITHMETIC; CHEBYSHEV POLYNOMIALS; COMPUTATIONAL COMPLEXITY; DISCRETE FOURIER TRANSFORM;
D O I
10.2307/2008542
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The discrete Fourier-cosine transform (cos-DFT), the discrete Fourier-sine transfrom (sin-DFT) and the discrete cosine transform (DCT) are closely related to the discrete Fourier transform (DFT) of real-valued sequences. This paper describes a general method for constructing fast algorithms for the cos-DFT, the sin-DFT and the DCT, which is based on polynomial arithmetic with Chebyshev polynomials and on the Chinese Remainder Theorem.
引用
收藏
页码:281 / 296
页数:16
相关论文
共 50 条
  • [1] Supercharacters and the discrete Fourier, cosine, and sine transforms
    Garcia, Stephan Ramon
    Yih, Samuel
    [J]. COMMUNICATIONS IN ALGEBRA, 2018, 46 (09) : 3745 - 3765
  • [2] Fast algorithms of discrete Fourier and Cosine transforms in mixed formats
    Pogribny, W
    Drechny, M
    [J]. ISPA 2003: PROCEEDINGS OF THE 3RD INTERNATIONAL SYMPOSIUM ON IMAGE AND SIGNAL PROCESSING AND ANALYSIS, PTS 1 AND 2, 2003, : 779 - 783
  • [3] The algebraic approach to the discrete cosine and sine transforms and their fast algorithms
    Püschel, M
    Moura, JMF
    [J]. SIAM JOURNAL ON COMPUTING, 2003, 32 (05) : 1280 - 1316
  • [4] ON RELATING DISCRETE FOURIER, SINE, AND SYMMETRIC COSINE TRANSFORMS
    ERSOY, O
    [J]. IEEE TRANSACTIONS ON ACOUSTICS SPEECH AND SIGNAL PROCESSING, 1985, 33 (01): : 219 - 222
  • [5] Design of the Processors for Fast Cosine and Sine Fourier Transforms
    Ivan Tsmots
    Vasyl Rabyk
    Natalia Kryvinska
    Mykhaylo Yatsymirskyy
    Vasyl Teslyuk
    [J]. Circuits, Systems, and Signal Processing, 2022, 41 : 4928 - 4951
  • [6] Design of the Processors for Fast Cosine and Sine Fourier Transforms
    Tsmots, Ivan
    Rabyk, Vasyl
    Kryvinska, Natalia
    Yatsymirskyy, Mykhaylo
    Teslyuk, Vasyl
    [J]. CIRCUITS SYSTEMS AND SIGNAL PROCESSING, 2022, 41 (09) : 4928 - 4951
  • [7] A DISCRETE FOURIER-COSINE TRANSFORM CHIP
    VETTERLI, M
    LIGTENBERG, A
    [J]. IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, 1986, 4 (01) : 49 - 61
  • [8] On the polyconvolution for Hartley, Fourier cosine and Fourier sine transforms
    Nguyen Xuan Thao
    Nguyen Minh Khoa
    Phi Thi Van Anh
    [J]. INTEGRAL TRANSFORMS AND SPECIAL FUNCTIONS, 2013, 24 (07) : 517 - 531
  • [9] Permutability of Cosine and Sine Fourier Transforms
    Pavlov, A., V
    [J]. MOSCOW UNIVERSITY MATHEMATICS BULLETIN, 2019, 74 (02) : 75 - 78
  • [10] Permutability of Cosine and Sine Fourier Transforms
    A. V. Pavlov
    [J]. Moscow University Mathematics Bulletin, 2019, 74 : 75 - 78