REGULARIZED QUASI-NEWTON METHOD FOR INVERSE SCATTERING PROBLEMS

被引:21
|
作者
GUTMAN, S [1 ]
KLIBANOV, M [1 ]
机构
[1] UNIV N CAROLINA,DEPT MATH,CHARLOTTE,NC 28223
关键词
D O I
10.1016/0895-7177(93)90076-B
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
We study the weak scattering case of a 3-D inverse scattering problem. The iterative sequence is defined in the framework of a Quasi-Newton method. Using the measurements of the scattering field from the carefully chosen set of directions, we are able to recover (finitely many) Fourier coefficients of the sought parameters of the model. In this method, the linearized (Born) approximation is just the first iteration, and further iterations improve the identification by an order of magnitude. A special regularization for the Frechet derivative's inverse provides a significant improvement in the algorithm's performance. Numerical experiments for the scattering from coaxial circular cylinders with exact data are presented.
引用
收藏
页码:5 / 31
页数:27
相关论文
共 50 条
  • [1] A QUASI-NEWTON METHOD IN INVERSE OBSTACLE SCATTERING
    KRESS, R
    RUNDELL, W
    [J]. INVERSE PROBLEMS, 1994, 10 (05) : 1145 - 1157
  • [2] BFGS quasi-Newton method for solving electromagnetic inverse problems
    Hu, JL
    Wu, Z
    McCann, H
    Davis, LE
    Xie, CG
    [J]. IEE PROCEEDINGS-MICROWAVES ANTENNAS AND PROPAGATION, 2006, 153 (02) : 199 - 204
  • [3] On the convergence rate of a quasi-Newton method for inverse eigenvalue problems
    Chan, RH
    Xu, SF
    Zhou, HM
    [J]. SIAM JOURNAL ON NUMERICAL ANALYSIS, 1999, 36 (02) : 436 - 441
  • [4] An improved constrained quasi-Newton method for the solution of inverse electromagnetic problems
    Chatuthai, C
    Ramirez, JA
    Freeman, EM
    [J]. IEEE TRANSACTIONS ON MAGNETICS, 1996, 32 (03) : 1318 - 1321
  • [5] A new regularized quasi-Newton method for unconstrained optimization
    Zhang, Hao
    Ni, Qin
    [J]. OPTIMIZATION LETTERS, 2018, 12 (07) : 1639 - 1658
  • [6] A new regularized quasi-Newton method for unconstrained optimization
    Hao Zhang
    Qin Ni
    [J]. Optimization Letters, 2018, 12 : 1639 - 1658
  • [7] Global convergence of a regularized factorized quasi-Newton method for nonlinear least squares problems
    Zhou, Weijun
    Zhang, Li
    [J]. COMPUTATIONAL & APPLIED MATHEMATICS, 2010, 29 (02): : 195 - 214
  • [8] A quasi-Newton type method for equilibrium problems
    Leonardo A. Sousa
    Susana Scheimberg
    Pedro Jorge S. Santos
    Paulo Sérgio M. Santos
    [J]. Numerical Algorithms, 2022, 89 : 1129 - 1143
  • [9] A quasi-Newton type method for equilibrium problems
    Sousa, Leonardo A.
    Scheimberg, Susana
    Santos, Pedro Jorge S.
    Santos, Paulo Sergio M.
    [J]. NUMERICAL ALGORITHMS, 2022, 89 (03) : 1129 - 1143
  • [10] An Efficient Quasi-Newton Method for Nonlinear Inverse Problems via Learned Singular Values
    Smyl, Danny
    Tallman, Tyler N.
    Liu, Dong
    Hauptmann, Andreas
    [J]. IEEE Signal Processing Letters, 2021, 28 : 748 - 752