WEAR TRANSITIONS IN MONOLITHIC ALUMINA AND ZIRCONIA-ALUMINA COMPOSITES

被引:0
|
作者
WANG, YS
HE, C
HOCKEY, BJ
LACEY, PI
HSU, SM
机构
关键词
ALUMINA; CERAMICS; GRAIN SIZE; INTERNAL STRESS; PHASE TRANSFORMATION TOUGHENING; WEAR; WEAR TRANSITION; ZRO2-AL2O3; COMPOSITE;
D O I
10.1016/0043-1648(95)90020-9
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
The tribological properties of composite materials can be improved by its specially designed microstructure. Four zirconia-alumina composites (ZrO2-Al2O3) and a monolithic alumina were compared under paraffin oil lubricated wear test to investigate the effect of grain size, the residual stress and the phase transformation on the wear transitions. The tensile stress on the contact surface has been identified as the dominant stress which initiates the fracture wear of brittle materials. Wear transition occurs in the brittle materials when the tensile stress at the contact exceeds the critical value. The effect of zirconia content on the mean grain size of alumina and the wear transition resistance of the materials are presented. The dominant factors for the high wear transition resistance of ZrO2-Al2O3 composites are attributed to the fine grains with narrow size distribution within the material, the compressive residual stress on the surface due to phase transformation of zirconia and the low elastic moduli of ZrO2-Al2O3 composites. The fine grain of the composites and compressive residual stress improve the wear transition resistance, while the low elastic moduli of the composites increase the contact area and reduce the contact tensile stress. The wear transition mechanism of alumina and ZrO2-Al2O3 composites are compared by transmission electronic microscopy. During the tribological contact, ZrO2-Al2O3 composites generate dense dislocations and twins within the fine alumina and zirconia grains to absorb input energy, while monolithic alumina generates the transgranular cracks.
引用
收藏
页码:156 / 164
页数:9
相关论文
共 50 条
  • [1] Zirconia-alumina ceramic composites with extremely high wear resistance
    Kerkwijk, B
    Mulder, E
    Verweij, H
    [J]. ADVANCED ENGINEERING MATERIALS, 1999, 1 (01) : 69 - 71
  • [2] Electrical properties of zirconia-alumina composites
    M'Peko, JC
    Spavieri, DL
    da Silva, CL
    Fortulan, CA
    de Souza, DPF
    de Souza, MF
    [J]. SOLID STATE IONICS, 2003, 156 (1-2) : 59 - 69
  • [3] Thermal conductivity of zirconia-alumina composites
    Bansal, NP
    Zhu, DM
    [J]. CERAMICS INTERNATIONAL, 2005, 31 (07) : 911 - 916
  • [4] Fracture toughness of zirconia-alumina composites
    Casellas, D
    Ràfols, I
    Llanes, L
    Anglada, M
    [J]. INTERNATIONAL JOURNAL OF REFRACTORY METALS & HARD MATERIALS, 1999, 17 (1-3): : 11 - 20
  • [5] ZIRCONIA-ALUMINA PARTICULATE COMPOSITES BY INFILTRATION PROCESSING
    RIOU, S
    QUEYROUX, F
    BOCH, P
    [J]. CERAMICS INTERNATIONAL, 1995, 21 (05) : 339 - 343
  • [6] On the variability of strength to toughness ratio in zirconia-alumina composites
    Konsztowicz, KJ
    Langlois, R
    [J]. JOURNAL OF MATERIALS SCIENCE LETTERS, 1996, 15 (12) : 1093 - 1096
  • [7] Development and characterization of zirconia-alumina composites for orthopedic implants
    Sequeira, S.
    Fernandes, M. H.
    Neves, N.
    Almeida, M. M.
    [J]. CERAMICS INTERNATIONAL, 2017, 43 (01) : 693 - 703
  • [8] Fabrication and characteristics of zirconia-alumina composites with bilayer structure
    Je, SJ
    Lee, MW
    Lee, JE
    Jung, YG
    Park, DS
    Paik, U
    [J]. NANOSCALE MATERIALS AND MODELING-RELATIONS AMONG PROCESSING, MICROSTRUCTURE AND MECHANICAL PROPERTIES, 2004, 821 : 117 - 122
  • [9] Relationship of microstructure to mechanical and thermal properties of zirconia-alumina composites
    Zárate, J
    Contreras, ME
    Juárez, H
    Pérez, R
    [J]. REVISTA MEXICANA DE FISICA, 2004, 50 : 54 - 56
  • [10] ZIRCONIA-ALUMINA FUNCTIONALLY GRADIENTED COMPOSITES BY ELECTROPHORETIC DEPOSITION TECHNIQUES
    SARKAR, P
    HUANG, XN
    NICHOLSON, PS
    [J]. JOURNAL OF THE AMERICAN CERAMIC SOCIETY, 1993, 76 (04) : 1055 - 1056