SCALING FOR SMALL RANDOM PERTURBATIONS OF GOLDEN CRITICAL CIRCLE MAPS

被引:16
|
作者
HAMM, A
GRAHAM, R
机构
[1] Fachbereich Physik, Universität Gesamthochschule
来源
PHYSICAL REVIEW A | 1992年 / 46卷 / 10期
关键词
D O I
10.1103/PhysRevA.46.6323
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
The effect of external random noise on the transition to chaos at critical circle maps with golden-mean winding number is studied by three different methods with particular stress on the method of quasipotential scaling. A comparison of the various methods serves to explain why former computations of noise-scaling factors were valid only for Gaussian noise and shows how to deal with a larger class of noise distributions.
引用
收藏
页码:6323 / 6333
页数:11
相关论文
共 50 条
  • [1] Positive Lyapunov exponent for random perturbations of predominantly expanding multimodal circle maps
    Blumenthal, Alex
    Yang, Yun
    [J]. ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2022, 39 (02): : 419 - 455
  • [2] UNIVERSAL SCALING IN CIRCLE MAPS
    KIM, S
    OSTLUND, S
    [J]. PHYSICA D, 1989, 39 (2-3): : 365 - 392
  • [3] ON STOCHASTIC PERTURBATIONS OF ITERATIONS OF CIRCLE MAPS
    KAIJSER, T
    [J]. PHYSICA D, 1993, 68 (02): : 201 - 231
  • [4] Small stochastic perturbations of random maps with position dependent probabilities
    Bahsoun, W
    Góra, P
    Boyarsky, A
    [J]. STOCHASTIC ANALYSIS AND APPLICATIONS, 2004, 22 (04) : 1121 - 1130
  • [5] Random perturbations of iterated maps
    SalazarAnaya, G
    Urias, J
    [J]. JOURNAL OF MATHEMATICAL PHYSICS, 1996, 37 (07) : 3641 - 3643
  • [6] FURTHER SCALING PROPERTIES FOR CIRCLE MAPS
    MAYER, DH
    [J]. LETTERS IN MATHEMATICAL PHYSICS, 1984, 8 (05) : 435 - 438
  • [7] EXISTENCE, NONEXISTENCE AND UNIVERSAL BREAKDOWN OF DISSIPATIVE GOLDEN INVARIANT TORI .1. GOLDEN CRITICAL CIRCLE MAPS
    RAND, DA
    [J]. NONLINEARITY, 1992, 5 (03) : 639 - 662
  • [8] CIRCLE MAPS WITH SYMMETRY-BREAKING PERTURBATIONS
    ERIKSSON, AB
    EINARSSON, T
    OSTLUND, S
    [J]. PHYSICA D, 1992, 57 (1-2): : 58 - 84
  • [9] EDMD for expanding circle maps and their complex perturbations
    Bandtlow, Oscar F.
    Just, Wolfram
    Slipantschuk, Julia
    [J]. APPLIED AND COMPUTATIONAL HARMONIC ANALYSIS, 2024, 73
  • [10] GAUSSIAN PERTURBATIONS OF CIRCLE MAPS: A SPECTRAL APPROACH
    Mayberry, John
    [J]. ANNALS OF APPLIED PROBABILITY, 2009, 19 (03): : 1143 - 1171