CANCELLATION ERRORS IN QUASI-NEWTON METHODS

被引:1
|
作者
FLETCHER, R
机构
关键词
D O I
10.1137/0907092
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
引用
收藏
页码:1387 / 1399
页数:13
相关论文
共 50 条
  • [1] A TEST FOR CANCELLATION ERRORS IN QUASI-NEWTON METHODS
    GURWITZ, C
    [J]. ACM TRANSACTIONS ON MATHEMATICAL SOFTWARE, 1992, 18 (02): : 134 - 140
  • [2] On quasi-Newton methods with modified quasi-Newton equation
    Xiao, Wei
    Sun, Fengjian
    [J]. PROCEEDINGS OF 2008 INTERNATIONAL PRE-OLYMPIC CONGRESS ON COMPUTER SCIENCE, VOL II: INFORMATION SCIENCE AND ENGINEERING, 2008, : 359 - 363
  • [3] A Survey of Quasi-Newton Equations and Quasi-Newton Methods for Optimization
    Chengxian Xu
    Jianzhong Zhang
    [J]. Annals of Operations Research, 2001, 103 : 213 - 234
  • [4] Survey of quasi-Newton equations and quasi-Newton methods for optimization
    Xu, CX
    Zhang, JZ
    [J]. ANNALS OF OPERATIONS RESEARCH, 2001, 103 (1-4) : 213 - 234
  • [5] QUASI-NEWTON METHODS FOR SADDLEPOINTS
    BIEGLERKONIG, F
    [J]. JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 1985, 47 (04) : 393 - 399
  • [6] Stochastic Quasi-Newton Methods
    Mokhtari, Aryan
    Ribeiro, Alejandro
    [J]. PROCEEDINGS OF THE IEEE, 2020, 108 (11) : 1906 - 1922
  • [7] A classification of quasi-Newton methods
    Brezinski, C
    [J]. NUMERICAL ALGORITHMS, 2003, 33 (1-4) : 123 - 135
  • [8] APPROXIMATE QUASI-NEWTON METHODS
    KELLEY, CT
    SACHS, EW
    [J]. MATHEMATICAL PROGRAMMING, 1990, 48 (01) : 41 - 70
  • [9] Decentralized Quasi-Newton Methods
    Eisen, Mark
    Mokhtari, Aryan
    Ribeiro, Alejandro
    [J]. IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2017, 65 (10) : 2613 - 2628
  • [10] A Classification of Quasi-Newton Methods
    C. Brezinski
    [J]. Numerical Algorithms, 2003, 33 : 123 - 135